Traffic Impact Study Smithville School District Smithville, Missouri

Prepared by:

Shashi Gannavaram, P.E., PTOE, AICP, PTP PMB #127, 233 SW Greenwich Drive Lee's Summit, MO 64082

Traffic Impact Study – Smithville School District, Smithville, Missouri

1 Table of Contents

2	I	Introduction	3
3	E	Existing conditions	3
	3.1	Traffic counts	3
	3.	.1.1 Peak hour factors	4
4	٦	Traffic volumes	4
	4.1	Full-day access:	4
	4.2	Bus-storage facility	5
	4.	.2.1 Site volumes	6
	4.3	Turn lanes	6
	4.4	Capacity analysis	6
	4.5	Queue lengths	7
	4.6	Speed zone	7
5	S	Suggestions for improvements	7
6	E	Exhibits	9

2 Introduction

The Smithville School District is proposing to convert the South Driveway to the school property from Route 92 from morning-only access to an all-day access. In addition, the school district proposes to add a school bus storage facility at this site. This driveway is gated during the afternoon hours to prevent access to Route 92. This site has three schools. Their hours of operation and approximate enrollment are noted below:

- 1. Smithville High School (7:42 AM to 2:42 PM; 930 students)
- 2. Smithville Middle School (7:35 AM to 2:35 PM; 630 students) and
- 3. Smithville Horizon Elementary School (8:45 AM to 3:45 PM; 433 students).

This report documents the analysis completed by R^3C Design Group, LLC. The purpose is to determine the traffic impacts of these improvements. Exhibit 1 shows the site location in relation to the adjoining roadways.

3 Existing conditions

The study area includes the following intersections:

- 1. Commercial Avenue at:
 - a. Main School Driveway
 - b. North School Driveway
- 2. Route 92 at:
 - a. Commercial Avenue
 - b. South School Driveway

Route 92 is a regional highway that connects various communities in Missouri. At this location, it is a two-lane roadway with a posted speed limit of 35 miles per hour (mph) to approximately 270-feet west of the South Driveway intersection. The speed limit changes to 45 mph.

Commercial Avenue functions as a minor arterial street. It too is a two-lane roadway, and the posted speed limit is 25 mph. The Route 92/Commercial Avenue intersection is a single-lane roundabout, while all other intersections in the study area are two-way stop-controlled intersections.

3.1 Traffic counts

Existing peak-hour traffic counts at the study intersections are obtained by TJ Brown and Associates. Each intersection's morning and afternoon peak hour counts are collected between the hours of 6:00 and 9:30 AM and 2:00 and 5:00 PM.

Four unique traffic flow peaks occur at the study area intersections. The middle and high school traffic enters the site around 7:30 AM and exits around 2:45 PM. The elementary school traffic enters the site around 8:45 AM and exits around 3:45 PM. Analysis is completed for all four peak hours experienced in the study area.

Exhibit 2 summarizes the middle/high school traffic peak hour data while Exhibit 3 summarizes the elementary school peak hour data. Further, the total traffic entering and/or exiting the site during the four peak hours is shown in the exhibits.

3.1.1 Peak hour factors

The Peak Hour Factor (PHF) is a ratio of the total hourly traffic volume compared to the maximum 15-minute traffic volume within the hour. PHF represents the flow variation within a given hour. Because substantial short-term fluctuations are typical within the peak hours, the level of service analysis is based on peak rate of flow occurring within the peak hour. The relationship between the 15-minute peak flow rate and the full hourly volume is given by the following equation:

 $PHF = V/(4*V_{15})$

Where:

V = peak-hour volume (vehicles per hour)

V₁₅ = volume during the peak 15 minutes of flow (vehicles per 15 minutes)

- PHF = 1, the maximum possible PHF) indicates that traffic volumes are evenly distributed over the hour. Traffic approaches the intersection at a constant rate for the entire peak hour.
- PHF = 0.25, the minimum possible PHF, indicates that the total hourly traffic flow approaches the intersection within a single 15-min period.

The peak hour factors are calculated for the four peak hours. Exhibit 4 shows the middle/high school PHFs; while Exhibit 5 shows the elementary school PHFs.

4 Traffic volumes

The study is conducted in two stages:

- 1. Determine the afternoon peak hour anticipated volumes to identify impacts of full-day access at the South Driveway.
- 2. Determine traffic impacts of the bus-storage facility on the adjacent street.

4.1 Full-day access:

The methodology used to determine the full day access impacts during the four peak hours is as follows:

- a. Identify the entering and exiting volumes to the school site.
 - i. Exhibit 2 shows the entering and exiting counts for the middle/high school peak hours.
 - ii. Exhibit 3 shows the entering and exiting counts for the elementary school peak hours.
- b. Compute the morning distribution percentages for the entering and exiting traffic. It is assumed that similar traffic flow patterns occur during the morning and afternoon for each school. The percentages are computed based on the total entering/exiting traffic at each of the school driveways.
 - i. Exhibit 6 shows the distribution percentages for the middle/high school peak hours.
 - ii. Exhibit 7 shows the distribution percentages for the elementary school peak hours.
- c. Assign afternoon entering and exiting totals to morning entering and exiting distribution percentages. The afternoon total entering/exiting traffic is multiplied by the distribution percentages to determine entering/exiting volume estimates at the school driveways. This identifies the reallocated school-only traffic volumes.
 - i. Exhibit 8 shows the reallocated school-only volumes for the middle/high school peak hours.

- ii. Exhibit 9 shows the reallocated school-only volumes for the elementary school peak hours.
- d. Remove afternoon school traffic from the counts data.
 - i. Exhibit 10 shows this calculation for the middle/high school peak hours.
 - ii. Exhibit 11 shows this calculation for the elementary school peak hours.
- e. Add the reallocated traffic volumes (Exhibits 8 and 9) to the traffic volumes without the school traffic (Exhibits 10 and 11) to determine the estimate of reallocated volumes.
 - i. Exhibit 12 shows the reallocated volumes for the middle/high school peak hours.
 - ii. Exhibit 13 shows the reallocated volumes for the elementary school peak hours.

4.2 Bus-storage facility

The additional traffic volume generated by the proposed bus storage facility is determined and used for further analysis. The school district provided the following pertinent information:

- The transportation facility will store 15 buses.
- Of the 15 buses, five (5) serve south and east, while ten (10) serve west and north of the school complex.
- \circ Morning:
 - Buses will leave the facility at 6:15 AM in the morning. The west and north service route buses would use the internal driveway. The five south and east service route buses will use the South Driveway.
 - Upon dropping students at school, the buses would use the internal driveway to return to the facility.
- Afternoon:
 - Buses will use the internal driveway to go to the schools to pick up students at 2:00 PM.
 - Buses will return to the facility at around 4:30 PM. The south and east service route buses would use the South Driveway intersection, while the north and west service route buses would probably use the Main Driveway intersection.

It is noted that the middle/high school peak hour is between 7:00 and 8:00 AM. Buses leaving the facility would not impact the middle/high school morning peak hour. At the finish of the morning routes, the buses would use the internal driveway upon dropping students off at the elementary school. Therefore, there will be no impact on the street system.

School bus traffic between the middle/high school drop-off and return to pick-up students from their residences is already accounted for in the traffic counts.

In the afternoon, buses will go to the schools to pick up students using the internal driveway. Therefore, there will be no impact to the street system. The elementary school afternoon peak hour extends until 4:45 PM. Therefore, when buses return to the storage facility at 4:30 PM, they will impact the street system during the hour.

School bus traffic between the middle/high-school pick-up and return to elementary school for pick-up is already accounted for in the traffic counts. No changes to this operation are anticipated.

Based on the above, only the afternoon elementary school peak hour will have additional traffic volumes due to the bus storage facility.

The trip generation and distribution from the bus storage facility is shown in Exhibit 14.

4.2.1 Site volumes

The anticipated elementary school afternoon peak hour site volumes are computed by adding the reallocated traffic volumes (Exhibit 13) to the trip distribution volumes (Exhibit 14). This is shown in Exhibit 15.

4.3 Turn lanes

The Missouri Department of Transportation (MoDOT) provides left and right-turn treatment guidelines in the <u>MoDOT Engineering Policy Guide (EPG)</u>, modified on March 15, 2019. The EPG is available online at: <u>http://epg.modot.org/index.php/Main_Page</u>. The existing (Exhibits 2 and 3), reallocated (Exhibits 12 and 13) and site (Exhibit 15) volumes are used to determine the need for a left turn lane at the South Driveway intersection. The criteria from the EPG are reproduced in Exhibit 16 for left turn lanes.

Exhibit 16 shows the turning volume estimates for the peak hours for each scenario. It is noted that the volumes barely meet the criteria for the existing and the reallocated middle/high school morning peak hour. The criteria are not met for the other scenarios.

During the existing morning peak hours, observations made by the school district and verified by R^3C Design Group engineers indicate that there is no spillback from the South Driveway to the roundabout. The queues at the South Driveway were minimal and no excessive delays were noticed.

4.4 Capacity analysis

Based on the lane geometry, a capacity analysis is completed. The methods used for analysis are prescribed by the <u>Highway Capacity Manual (HCM</u>) and published by the Transportation Research Board (TRB), 6th edition. The HCM ranks operations at intersections based on the delays experienced by the users. The ranking ranges from A through F, where Level-of-Service (LOS) A represents free-flow traffic conditions, and drivers experience minimal delays. LOS F represents a breakdown in the roadway system. Most agencies desire LOS D or better for operations during the peak hours.

The software <u>Synchro + Simtraffic</u>, version 11, released by Trafficware Corporation, incorporates HCM methodology and is used to complete the analysis at the two-way stop-controlled intersections. The software SIDRA, released by Akcelik & Associates, version 9.1, is used to complete the analysis at the roundabout.

Capacity analysis results are summarized in Exhibit 17 for the morning peak hours and Exhibit 18 for the afternoon peak hours. From the analysis, it is noted that all movements, except for westbound left at the Main Driveway, are expected to operate at a LOS D or better. The Missouri Department of Transportation (MoDOT) considers a LOS D to be the minimum acceptable LOS during a peak hour.

The westbound left turn movement at the main driveway during the middle/high morning peak hour is traffic exiting the school after dropping students off at school. This movement and the associated back-ups occur within the school site and do not impact the public street system.

The South Driveway eastbound left (into the school site), on Route 92, operates at a LOS A during the existing middle/high school morning peak hour. During the afternoon peak hours, the worst LOS anticipated is LOS C with average delays of 17 seconds per vehicle, approximately.

4.5 Queue lengths

The software Simtraffic can show anticipated queue lengths for each movement at an intersection. The middle/high school morning peak hour queue lengths on Route 92, between the roundabout and the South Driveway intersection, is shown in Exhibit 19. It is noted that the anticipated queues do not spill to the downstream intersections.

4.6 Speed zone

During field observations it is noted that Route 92 is posted at 35 mph between the roundabout at Commercial Avenue and to approximately 270-feet west of the South Driveway intersection. These observations are noted in Exhibit 20.

Further, it was also observed that no school zone signing is installed on Route 92. If the South Driveway intersection is made full-day access, the 35-mph speed zone should be extended to include the South Driveway intersection. Further, appropriate school zone speed reduction and signing per the <u>Manual of Uniform Control Devices</u> (MUTCD), published by the Federal Highway Administration (FHWA), latest edition, should be installed on Route 92.

5 Suggestions for improvements

The Smithville School District is proposing to open the South Driveway/Route 92 intersection to fullday access. Currently, the intersection operates only during the morning and is gated during the afternoon hours. Further, the school district desires to construct a school bus storage facility at this site.

Traffic volumes are reallocated to the street system during the afternoon peak hours using the morning peak hour distributions. The trips generated by the school bus storage facility are determined based on district provided data.

Left turn lane requirements at the South Driveway are evaluated using methods prescribed by MoDOT in the Engineering Policy Guide (EPG). The eastbound left turn lane barely meets criteria during the middle/high morning peak hour.

Capacity analysis is completed using methods prescribed in the <u>Highway Capacity Manual</u>, published by the Transportation Research Board (TRB), 6th edition. Capacity analysis indicates that for the existing and proposed configuration and traffic volumes, all intersections, and movements (except for the westbound left turn movement out of the school during the middle/high school morning peak hour) in the study area are projected to operate at a Level-of-Service (LOS) D or better. The Missouri Department of Transportation (MoDOT) and the City of Smithville require LOS D or better for all traffic movements at an intersection.

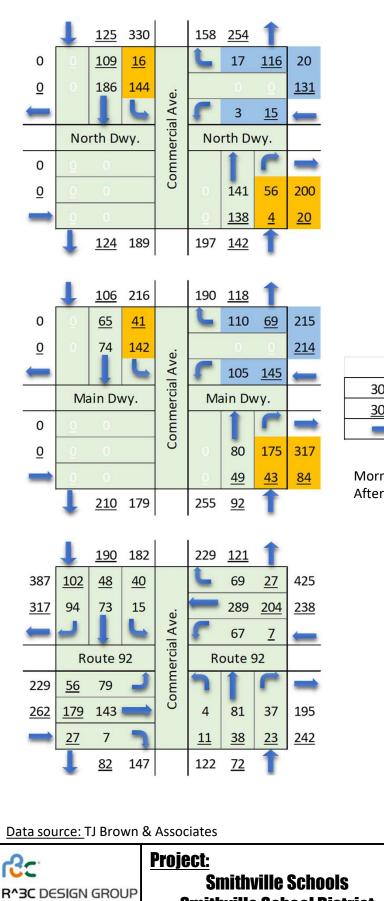
Queue lengths at the roundabout and the South Driveway intersection are evaluated using the Simtraffic software. The anticipated maximum queue lengths will not hinder traffic flow in the downstream intersection.

Traffic Impact Study – Smithville School District, Smithville, Missouri

Because the turn lane criteria are barely met; no known existing spillbacks to the roundabout are observed during the morning peak hours; and the queue lengths are minimal, it is suggested to <u>not</u> construct the eastbound left turn lane at the South Driveway. After the South Driveway is converted to full-day access, and the bus storage facility is constructed, it is suggested that traffic flow be observed during all four peak hours to ensure that roundabout operations are not impacted.

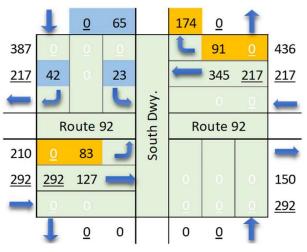
During field observations, it is observed that the 45 miles per hour (mph) speed zone for eastbound Route 92 traffic starts 270-feet west of the South Driveway intersection. It is suggested that the 45-mph speed zone start east of the South Driveway intersection. Further, appropriate school zone signing, including speed reductions, per the <u>Manual of Uniform Traffic Control Devices</u> (MUTCD), published by the Federal Highway Administration (FHWA) be installed on Route 92 at the South Driveway intersection. The school zone speed reduction would further reduce the need for the eastbound left turn lane.

Traffic Impact Study – Smithville School District, Smithville, Missouri


6 Exhibits

List of Exhibits

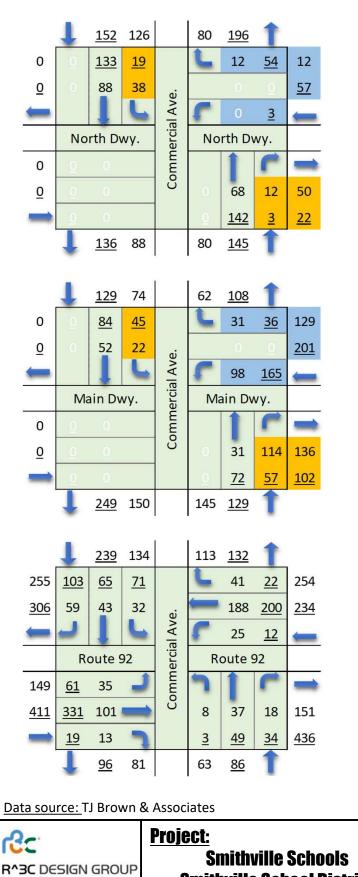
Exhibit #	Exhibit
1	Project location
2	Traffic counts – Middle/High School peak
3	Traffic counts – Elementary School peak
4	Peak hour factors – Middle/High School peak
5	Peak hour factors – Elementary School peak
6	Morning traffic distribution – Middle/High School
7	Morning traffic distribution – Elementary School
8	Afternoon traffic assignment – Middle/High School
9	Afternoon traffic assignment – Elementary School
10	Remove afternoon Middle/High School traffic
11	Remove afternoon Elementary school traffic
12	Reallocated volumes – Middle/High School peak
13	Reallocated volumes – Elementary School peak
14	Bus facility – trip generation & distribution
15	Site volumes – Elementary School afternoon peak
16	Turn lane analysis
17	Capacity analysis results – morning peak hour
18	Capacity analysis results – afternoon peak hour
19	Queue lengths
20	Speed zones



Mornir	ng peak	
Enter	691	
Exit	300	
Afterno	Afternoon peak	
Enter	104	
Exit	345	

Legend		
30	Morning peak hour count	
<u>30</u>	Afternoon peak hour count	
	Movement direction	

Morning peak hour: 7:00 to 8:00 AM Afternoon peak hour: 2:30 to 3:30 PM



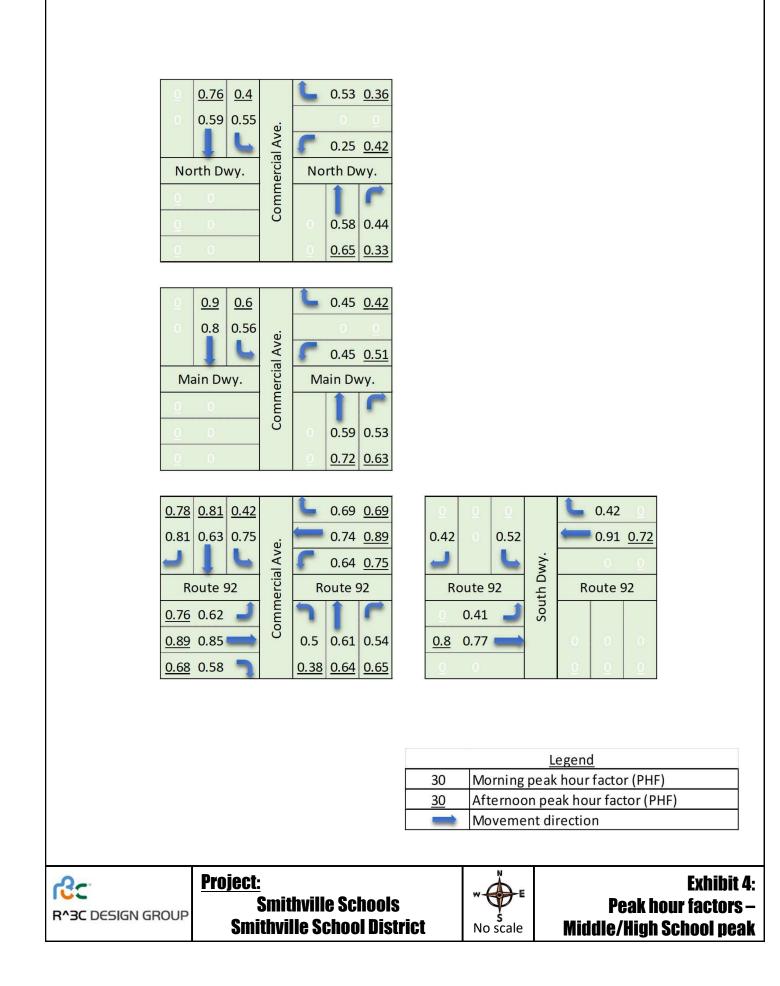
Smithville Schools

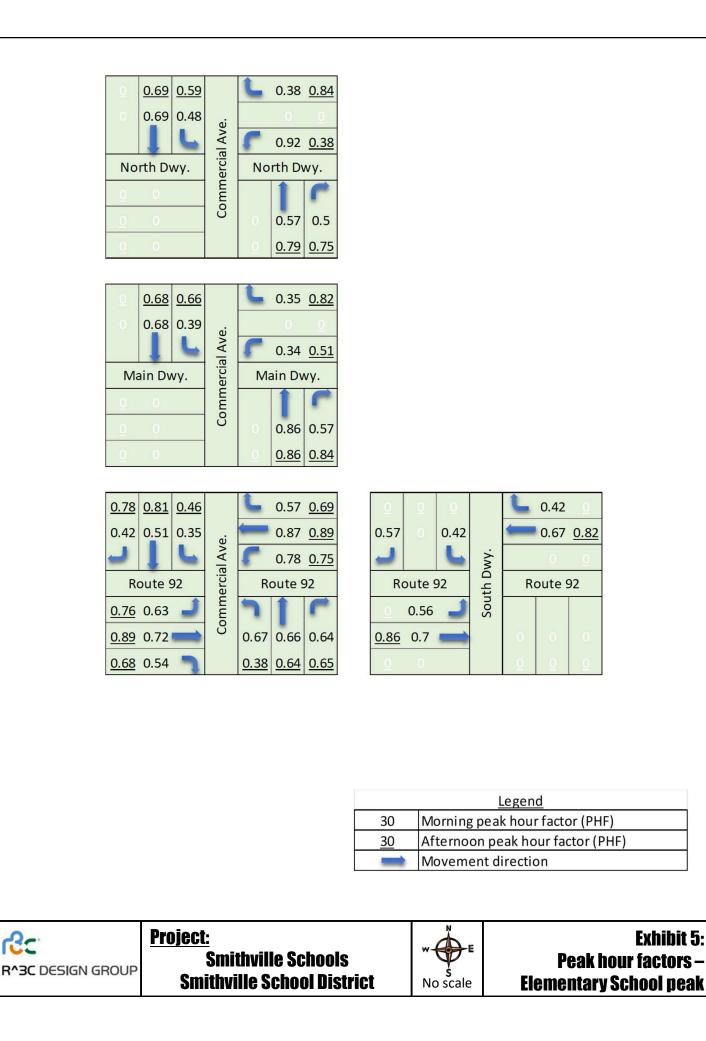
Smithville School District

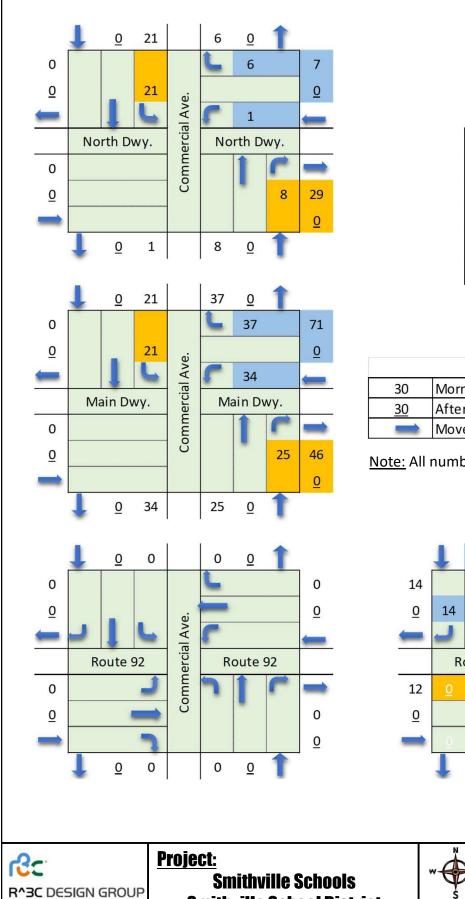
Exhibit 2: Traffic counts -Middle/High School peak


Smithville School District

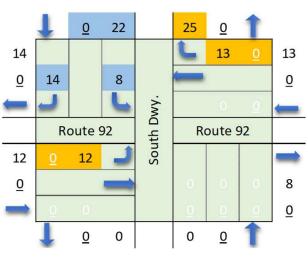
Morning peak			
Enter	200		
Exit	167		
Afterno	Afternoon peak		
Enter	124		
Exit	258		


Legend	
30	Morning peak hour count
30 Afternoon peak hour count	
	Movement direction


Morning peak hour: 8:15 to 9:15 AM Afternoon peak hour: 3:45 to 4:45 PM

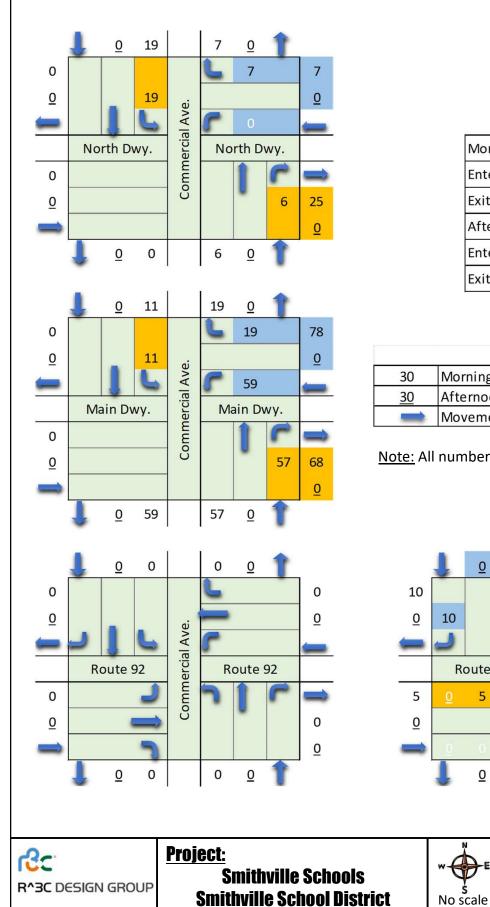

No scale

Traffic counts – Elementary School peak

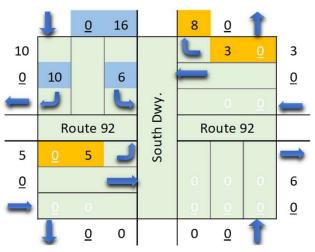


Morning peak	
Enter	100
Exit	100
Afternoon peak	
Enter (
Exit	0

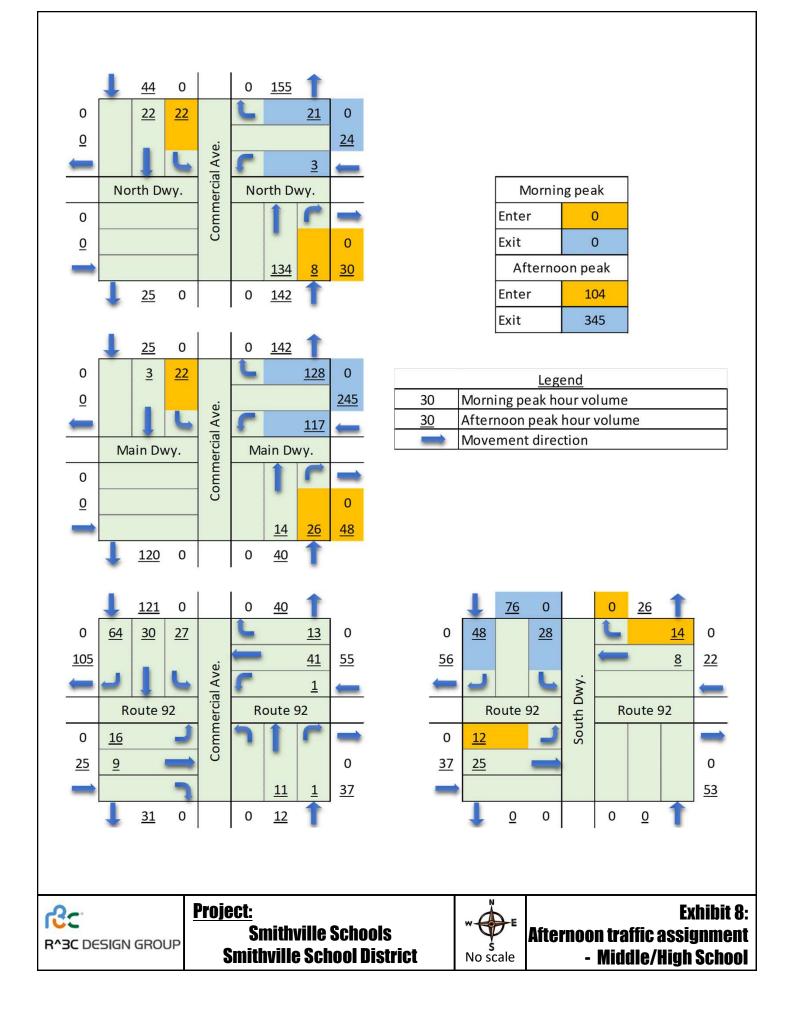
Legend		
30	Morning peak hour percentage	
<u>30</u>	Afternoon peak hour percentage	
	Movement direction	

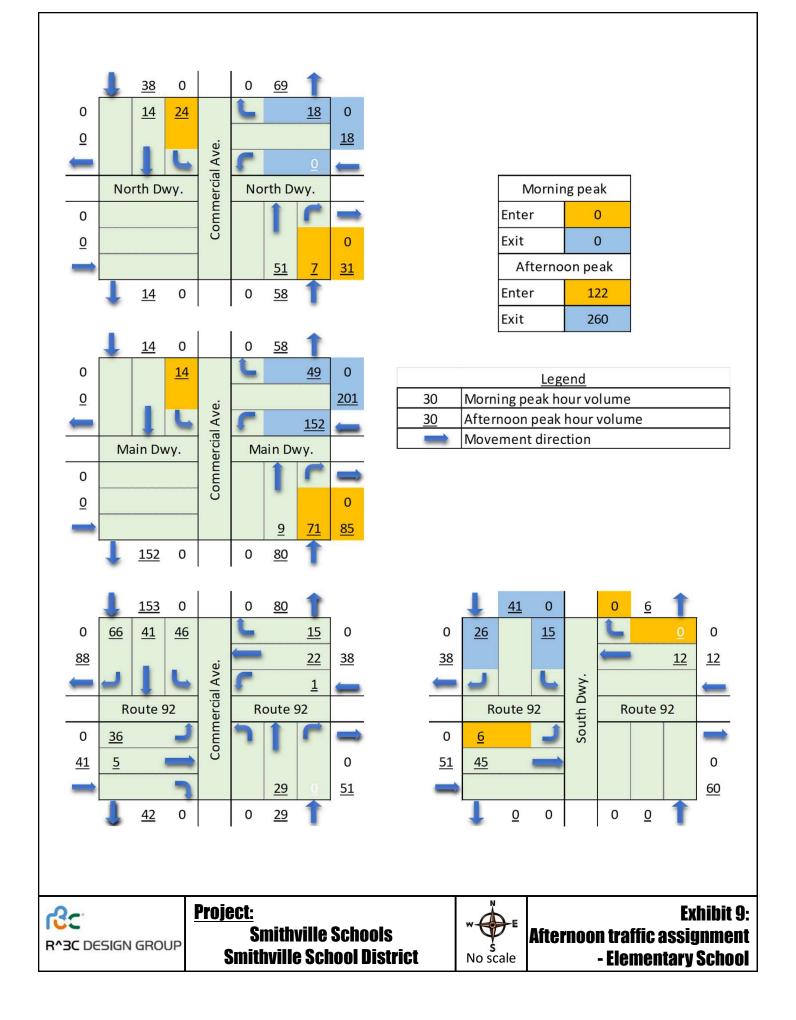

Note: All numbers are percentages in this graphic

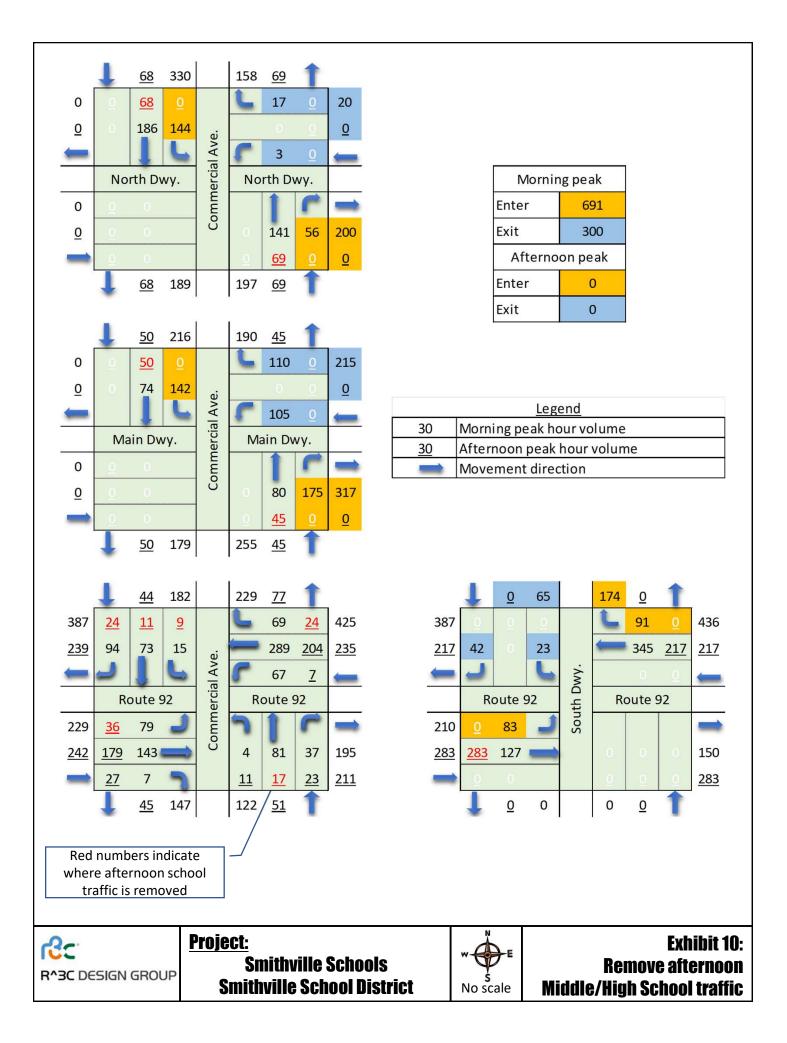
Smithville School District

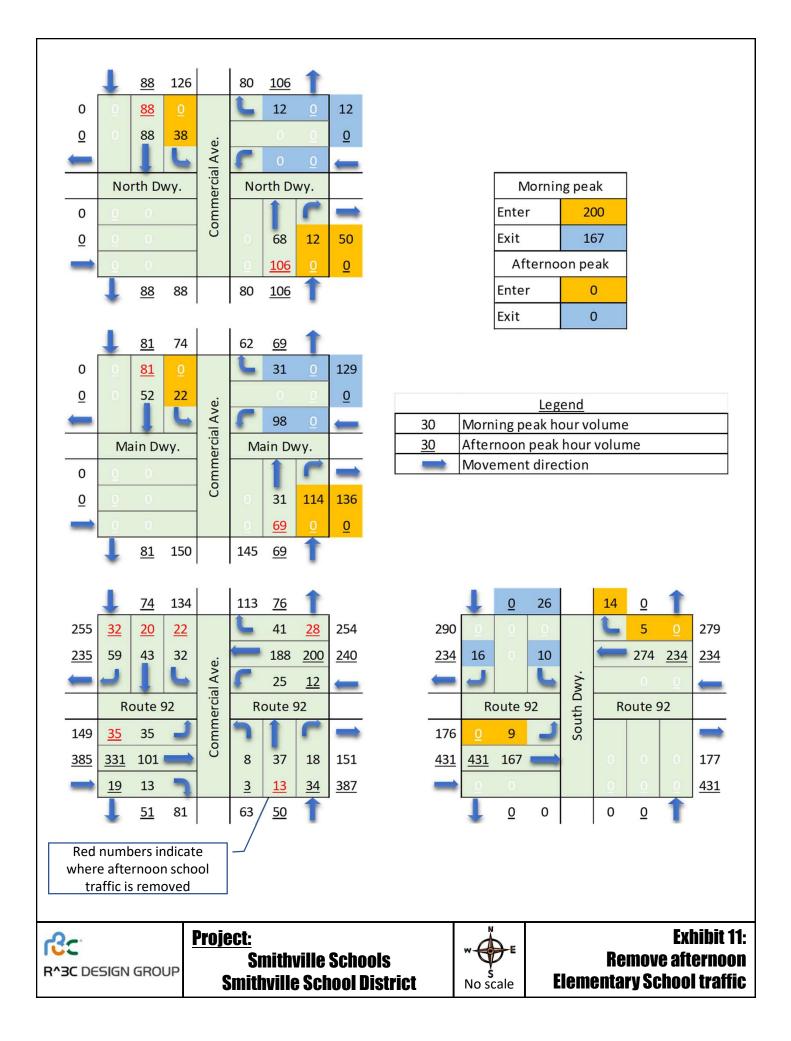

Exhibit 6: **Morning traffic distribution** - Middle/High School

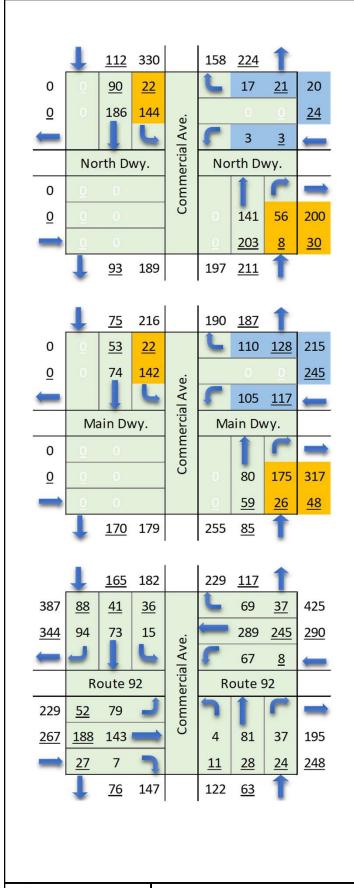
Morning peak	
Enter	101
Exit	101
Afternoon peak	
Enter	0
Exit	0

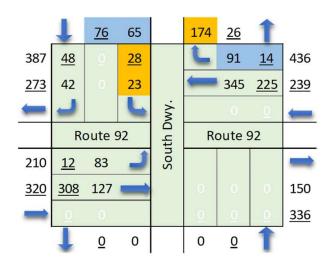

	Legend
30	Morning peak hour percentage
<u>30</u>	Afternoon peak hour percentage
-	Movement direction


Note: All numbers are percentages in this graphic




E

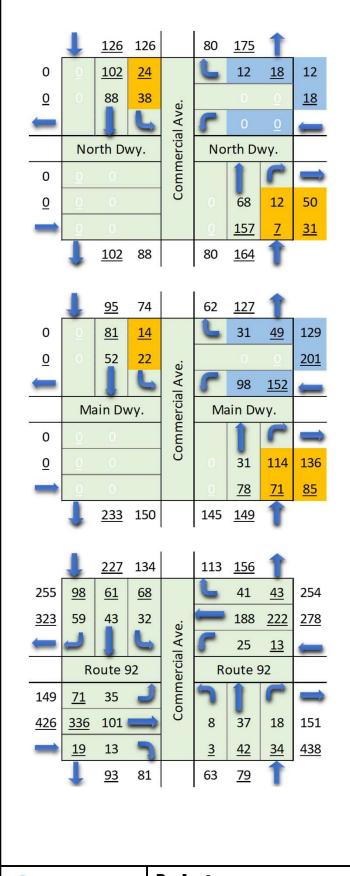

Exhibit 7: **Morning traffic distribution** - Elementary School



Morning peak		
Enter	691	
Exit	300	
Afternoon peak		
Enter	104	
Exit	345	

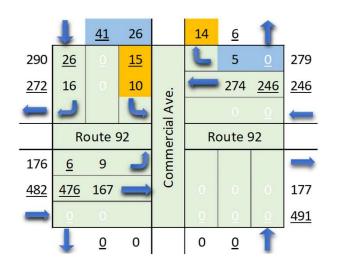
Legend		
30	Morning peak hour volume	
<u>30</u>	Afternoon peak hour volume	
-	Movement direction	

<u>Note:</u> Reallocated volumes computed by adding no school traffic volumes (Exhibit 10) to the afternoon assignment volumes (Exhibit 8)



R^3C DESIGN GROUP

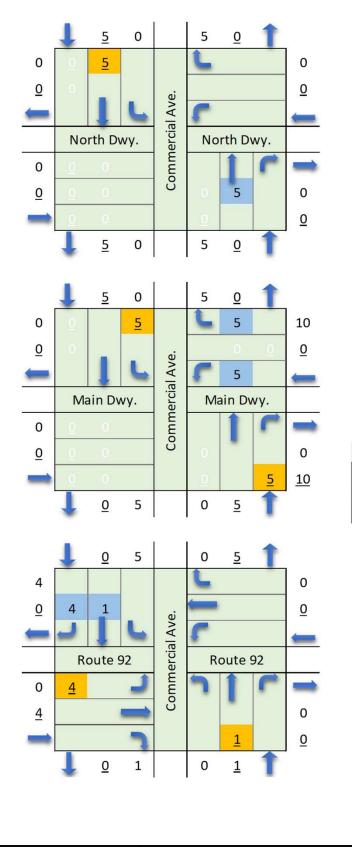
<u>Project:</u> Smithville Schools Smithville School District


Exhibit 12: Reallocated volumes – Middle/High School peak

Morning peak									
Enter	200								
Exit	167								
Afterno	on peak								
Enter	122								
Exit	260								

	Legend							
30 Morning peak hour volume								
<u>30</u>	Afternoon peak hour volume							
	Movement direction							

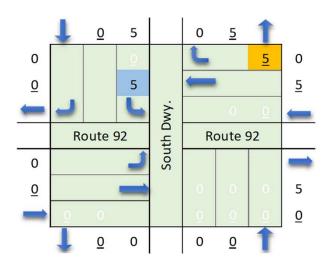
<u>Note:</u> Reallocated volumes computed by adding no school traffic volumes (Exhibit 11) to the afternoon assignment volumes (Exhibit 9)



R^3C DESIGN GROUP

<u>Project:</u> Smithville Schools Smithville School District

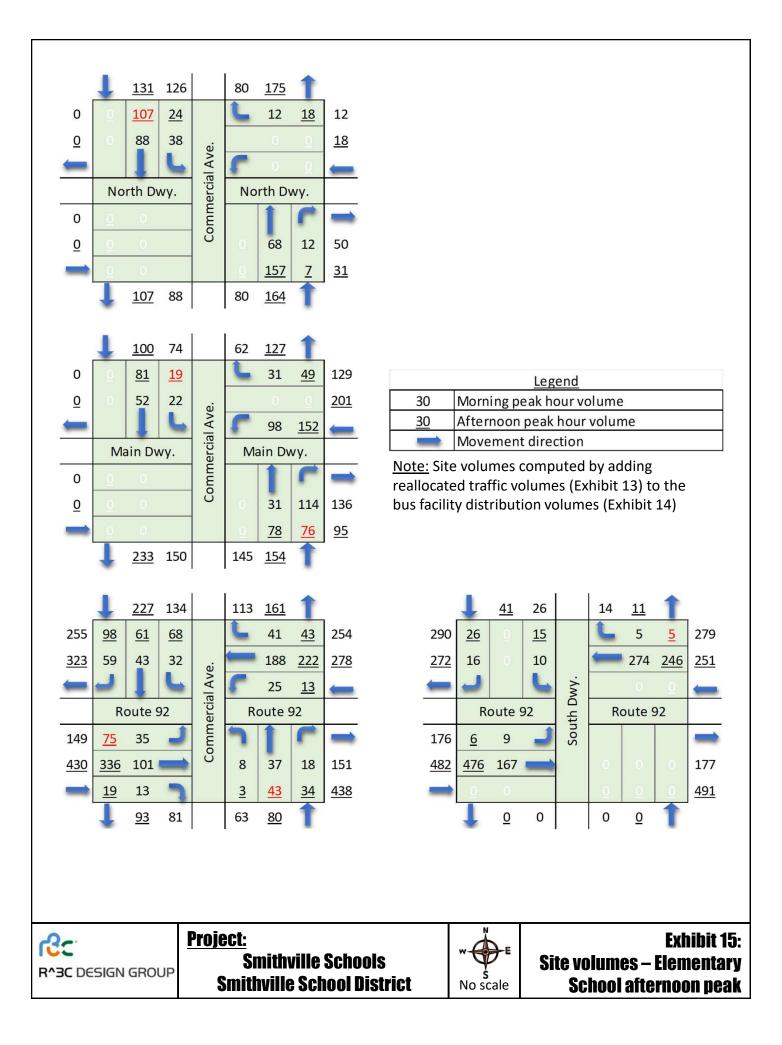
Exhibit 13: Reallocated volumes – Elementary School peak

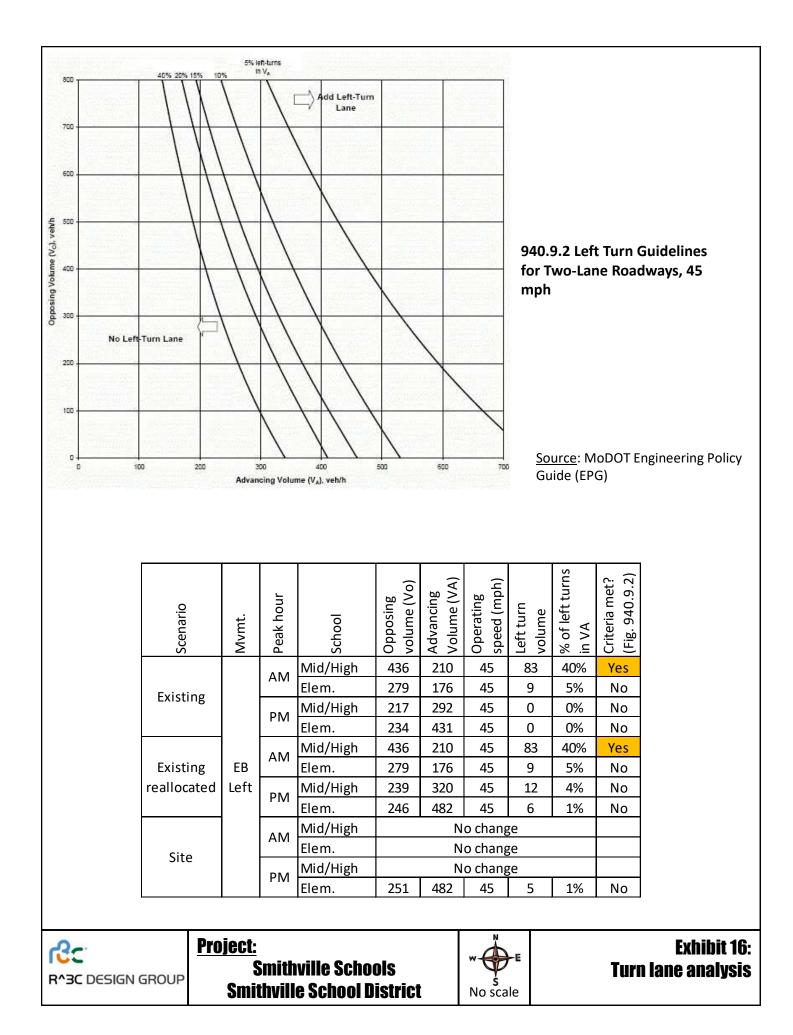

Notes:

- 1. Total buses = 15
- 2. 10 busses serve north and west
- 3. 5 busses serve south and east
- 4. Morning peak hour
- a. Depart at 6:15 AM (outside peak hour)
- b. Return at 9:00 AM using internal driveways
- 5. Afternoon peak hour
- a. Depart at 2:00 PM using internal driveways
- b. Return at 4:30 PM

6. Bus volumes between middle/high school and elmentary school drop-off/pick-up are included in traffic counts

7. Only afternoon (4:30 PM) return busses will impact elementary school dismissal peak hour.


	Legend
30	Morning peak hour volume
<u>30</u>	Afternoon peak hour volume
	Movement direction



<u>Project:</u> Smithville Schools Smithville School District

Exhibit 14: Bus facility – trip generation & distribution

Peak					Eas	tbou	nd	We	stbou	nd	Nor	thbou	Ind	Sout	thbou	ind		
hour	Scenario		Int.	Item	LT	TH	RT	LT	TH	RT	LT	ΤН	RT	LT	TH	RT	Int.	
		ial	North Dwy.	Delay					15.9			0.0	0.0	8.9	0.0		3.0	
-		nerci e. at	North Dwy.	LOS					С			Α	А	А	А		*	
р Ч	50	Commercial Ave. at		Delay				104.2		12.3		0.0	0.0	9.3	0.0		23.0	
Mid/High School Morning	Existing	CO	Main Dwy.	LOS				F		В		А	А	А	А		*	
Hig	Exis	at	South Dwy	Delay	9.6	0.0								25.1		11.3	3.8	
lid/	ш	92	6		LOS	А	А								D		В	*
Σ		Route	Commercial	Delay	5.2				7.5			4.6			6.2		6.3	
		Rc	Ave. ¹	LOS		А			А			А			А		А	
		cial :	North Dwy.	Delay					9.1			0.0	0.0	7.6	0.0		2.3	
		nerci e. at	North Dwy.	LOS					А			А	А	А	А		*	
Elementary School Morning	50	Commercial Ave. at	mπ Av€	Main Dwy.	Delay				15.1		9.4		0.0	0.0	7.8	0.0		7.6
entary Sc Morning	Existing	S	Marri Dwy.	LOS				С		А		А	А	А	А		*	
nta Mor	Exis	at	South Dwy	Delay	8.2	0.0								14.3		10.9	1.1	
ame L		92	•	LOS	А	А								В		В	*	
Ele		Route	Commercial	Delay		4.1			4.9		3.7			4.7			4.5	
		Rc	Ave. ¹	LOS		А			А			А		А			А	

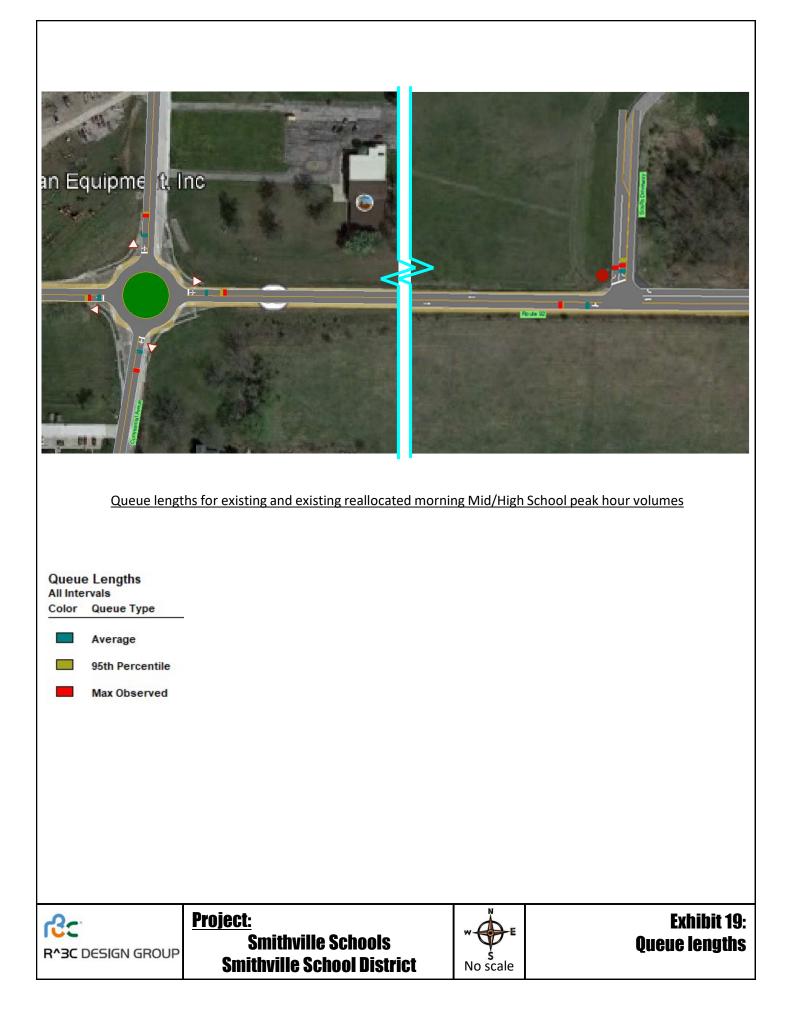
<u>Notes:</u>

* Intersection LOS is not computed for a two-way stop control intersection

1. Roundabout analysis completed using SIDRA. All other analysis completed using Synchro+Simtraffic

ເວີເ
R^3C DESIGN GROUP

Peak	Sector		lint	lt a rea	Ea	stbou	nd	We	stbo	und	Noi	thbo	und	Sou	thbo	und	Int	
hour	Scenario		Int.	ltem	LT	TH	RT	LT	ΤН	RT	LT	ΤН	RT	LT	ΤН	RT	Int.	
		ial		Delay					13.4	•		0.0	0.0	7.8	0.0		6.7	
		Commercial Ave. at	North Dwy.	LOS					В			А	А	А	А		*	
		mme Ave.		Delay				14.8		9.6		0.0	0.0	7.6	0.0		8.7	
	Existing	COI	Main Dwy.	LOS				В		А		А	А	А	А		*	
noc	:xist	at	Courth During	Delay													0.0	
erno	ш	92	South Dwy	LOS													*	
Aft∈		Route (Commercial	Delay		5.0			4.9			4.3			5.2		5.0	
Mid/High School Afternoon		Ro	Ave. ¹	LOS		А			А			А			А		А	
sche		ial		Delay					10.9			0.0	0.0	8.1	0.0		2.0	
gh S		Commercial Ave. at	North Dwy.	LOS					В			А	А	Α	А		*	
/Hig	g	mm Ave		Delay				12.1		10.6		0.0	0.0	7.5	0.0		8.3	
Mid	Reallocated	CO	Main Dwy.	LOS				В		В		А	А	Α	А		*	
~	allo	at	South Dury	Delay	8.0	0.0								15.1		10.3	1.4	
	Re	Route 92	South Dwy	LOS	А	Α								С		В	*	
		ute	Commercial	Delay		5.0			5.3			4.3			5.3		5.1	
		Rc	Ave. ¹	LOS		А			А			А			А			
		cial	North Dwy.	Delay					9.9			0.0	0.0	7.6	0.0		2.0	
		Commercial Ave. at		LOS					А			А	А	А	А		*	
	50	mm Av€	Main Dwy.	Delay				18.2		9.0		0.0	0.0	7.6	0.0		9.6	
	Existing	-	Wall Dwy.	LOS				С		Α		А	А	А	А		*	
	Exis	2 at		South Dwy	Delay	0.0	0.0								0.0		0.0	0.0
		e 92		LOS	А	Α								А	А	А	*	
		Route	Commercial	Delay				4.9			5.7			5.7			6.1	
Ę		Rc	Ave. ¹	LOS		А	1	А			A			A			Α	
00		cial t	North Dwy.	Delay					9.4			0.0	0.0	7.7	0.0		1.2	
ten		mmerci Ave. at	North Dwy.	LOS					А	1		Α	А	Α	Α		*	
IAf	ed	Commercial Ave. at	Main Dwy.	Delay				14.2		9.2		0.0	0.0	7.6	0.0		7.4	
OOL	Reallocated			LOS				В		Α		А	Α	Α	Α		*	
Sch	sallo	2 at	South Dwy	Delay	7.9	0.0								16.9		10.1	0.7	
Elementary School Afternoon	Re	e 92	•	LOS	Α	Α								С		В	*	
ient		Route	Commercial	Delay		7.2			5.3			5.7			5.8		6.3	
lem			Ave. ¹	LOS		А			А			А			А		Α	
ш		ercial at	North Dwy.	Delay					9.4			0.0	0.0	7.7	0.0		1.2	
		Commercial Ave. at		LOS					А			А	А	А	А		*	
		omme Ave.	Main Dwy.	Delay				14.7		9.2		0.0	0.0	7.6	0.0		7.5	
	Site	-	,-	LOS				С		А		А	А	А	А		*	
	S	2 at	South Dwy	Delay	7.9	0.0								16.9		10.1	0.7	
		e 92		LOS	А	А				<u> </u>				С		В	*	
		Route	Commercial	Delay	· 7.3			5.4			5.7			5.8			6.3	
		Å	Ave. ¹	LOS		А			Α			А			Α		Α	
Notes:																		


* Intersection LOS is not computed for a two-way stop control intersection

1. Roundabout analysis completed using SIDRA. All other analysis completed using Synchro+Simtraffic

<mark>сс</mark> R^3C DESIGN GROUP **Project: Smithville Schools Smithville School District**

Exhibit 18: Capacity analysis results – afternoon peak hour

Looking east along Route 92

Looking west along Route 92

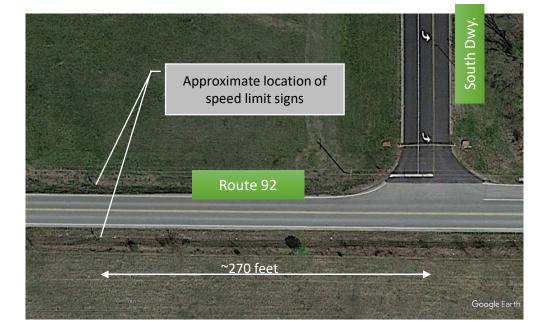


Image source: Google Earth

Exhibit 20: Speed zones Appendix to the Traffic Impact Study Smithville School District Smithville, Missouri

Prepared by:

R^3C DESIGN GROUP, ILC

Shashi Gannavaram, P.E., PTOE, AICP, PTP PMB #127, 233 SW Greenwich Drive Lee's Summit, MO 64082

Date: May 9, 2023

Appendix to Traffic Impact Study – Smithville School District, Smithville, Missouri

1 Contents

2	Ca	pacit	ty analysis reports	3
Ĩ	2.1	Exi	sting Middle/High School	3
	2.1	1	Morning peak hour	3
	2.1	2	Afternoon peak hour	8
ź	2.2	Exi	sting Elementary School	.13
	2.2	2.1	Morning peak hour	.13
	2.2	2.2	Afternoon peak hour	. 18
2	2.3	Rea	allocated Middle/High School	.23
	2.3	8.1	Afternoon peak hour	.23
2	2.4	Rea	allocated Elementary School	.28
	2.4	1.1	Afternoon peak hour	. 28
Ĩ	2.5	Site	e Elementary School	.33
	2.5	5.1	Afternoon peak hour	. 33

Appendix to Traffic Impact Study – Smithville School District, Smithville, Missouri

2 Capacity analysis reports

2.1 Existing Middle/High School

2.1.1 Morning peak hour

Intersection

Int Delay, s/veh	3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			ŧ
Traffic Vol, veh/h	3	17	141	56	144	186
Future Vol, veh/h	3	17	141	56	144	186
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	53	58	44	55	59
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	32	243	127	262	315

Major/Minor	Minor1	N	lajor1	M	lajor2	
Conflicting Flow All	1146	307	0	0	370	0
Stage 1	307	-	-	-	-	-
Stage 2	839	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-		2.218	-
Pot Cap-1 Maneuver	220	733	-	-	1189	-
Stage 1	746	-	-	-	-	-
Stage 2	424	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	161	733	-	-	1189	-
Mov Cap-2 Maneuver	161	-	-	-	-	-
Stage 1	746	-	-	-	-	-
Stage 2	311	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		4	
HCM LOS	10.0 C		0		т	
	Ū					

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 373	1189	-	
HCM Lane V/C Ratio	-	- 0.118	0.22	-	
HCM Control Delay (s)	-	- 15.9	8.9	0	
HCM Lane LOS	-	- C	А	А	
HCM 95th %tile Q(veh)	-	- 0.4	0.8	-	

Intersection							
Int Delay, s/veh	23						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	٦	1	Þ			÷.	1
Traffic Vol, veh/h	105	110	80	175	142	74	
Future Vol, veh/h	105	110	80	175	142	74	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	Stop	-	None	-	None)
Storage Length	0	200	-	-	-	-	
Veh in Median Storage	e, # 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	45	45	59	53	56	80)
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	233	244	136	330	254	93	}

Major/Minor	Minor1	Ν	/lajor1	1	Major2			
Conflicting Flow All	902	301	0	0	466	0		
Stage 1	301	-	-	-	-	-		
Stage 2	601	-	-	-	-	-		
Critical Hdwy	6.42	6.22	-	-	4.12	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-		
Critical Hdwy Stg 2	5.42	-	-	-	-	-		
Follow-up Hdwy	3.518	3.318	-	-	2.218	-		
Pot Cap-1 Maneuver	308	739	-	-	1095	-		
Stage 1	751	-	-	-	-	-		
Stage 2	547	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver		739	-	-	1095	-		
Mov Cap-2 Maneuver	~ 233	-	-	-	-	-		
Stage 1	751	-	-	-	-	-		
Stage 2	413	-	-	-	-	-		
Approach	WB		NB		SB			
HCM Control Delay, s	57.2		0		6.8			
HCM LOS	F							
Minor Lane/Major Mvi	mt	NBT	NBRW	BLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)		-	-	233	739	1095	<u>.</u>	
HCM Lane V/C Ratio		-	_ ·		0.331	0.232	-	
HCM Control Delay (s	5)	-		104.2	12.3	9.3	0	
HCM Lane LOS		-	-	F	B	A	Ă	
HCM 95th %tile Q(vel	ר)	-	-	9.4	1.4	0.9	-	
Notes								
~: Volume exceeds ca	apacity	\$: De	lay exce	eds 3)0s	+: Comp	outation Not Defined	*: All major volume in platoon

Exist Mid/High AM 1:50 pm 05/01/2023 Baseline

Int Delay, s/veh	3.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	1	1	٦	1
Traffic Vol, veh/h	83	127	345	91	23	42
Future Vol, veh/h	83	127	345	91	23	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	200	140	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	41	77	91	42	52	42
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	202	165	379	217	44	100

Major/Minor	Major1	M	lajor2		Minor2	
Conflicting Flow All	596	0	-	0	948	379
Stage 1	-	-	-	-	379	-
Stage 2	-	-	-	-	569	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	980	-	-	-	289	668
Stage 1	-	-	-	-	692	-
Stage 2	-	-	-	-	566	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	223	668
Mov Cap-2 Maneuver	r -	-	-	-	223	-
Stage 1	-	-	-	-	535	-
Stage 2	-	-	-	-	566	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 5.3		0		15.5	
HCM LOS					С	
Minor Long/Major My	una t	EDI	ГРТ			

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 S	SBLn2	
Capacity (veh/h)	980	-	-	- 223	668	
HCM Lane V/C Ratio	0.207	-	-	- 0.198	0.15	
HCM Control Delay (s)	9.6	0	-	- 25.1	11.3	
HCM Lane LOS	А	Α	-	- D	В	
HCM 95th %tile Q(veh)	0.8	-	-	- 0.7	0.5	

MOVEMENT SUMMARY

Site: 101 [Route 92 at Commercial Ave - Exist Mid/High AM

(Site Folder: General)]

Exist Mid/High AM Site Category: (None) Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INPI VOLU [Total veh/h		DEM/ FLO ^v [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	n: Comi	mercial Av	ve.											
3	L2	4	2.0	4	2.0	0.128	4.6	LOS A	0.6	14.2	0.41	0.28	0.41	35.1
8	T1	81	2.0	88	2.0	0.128	4.6	LOS A	0.6	14.2	0.41	0.28	0.41	35.1
18	R2	37	2.0	40	2.0	0.128	4.6	LOS A	0.6	14.2	0.41	0.28	0.41	34.1
Appro	oach	122	2.0	133	2.0	0.128	4.6	LOS A	0.6	14.2	0.41	0.28	0.41	34.8
East: Route 92														
1	L2	67	2.0	73	2.0	0.411	7.5	LOS A	2.5	62.8	0.46	0.31	0.46	33.3
6	T1	289	2.0	314	2.0	0.411	7.5	LOS A	2.5	62.8	0.46	0.31	0.46	33.3
16	R2	69	2.0	75	2.0	0.411	7.5	LOS A	2.5	62.8	0.46	0.31	0.46	32.4
Appro	oach	425	2.0	462	2.0	0.411	7.5	LOS A	2.5	62.8	0.46	0.31	0.46	33.1
North	n: Comr	nercial Av	/e.											
7	L2	15	2.0	16	2.0	0.220	6.2	LOS A	1.0	25.2	0.53	0.45	0.53	34.1
4	T1	73	2.0	79	2.0	0.220	6.2	LOS A	1.0	25.2	0.53	0.45	0.53	34.1
14	R2	94	2.0	102	2.0	0.220	6.2	LOS A	1.0	25.2	0.53	0.45	0.53	33.2
Appro	oach	182	2.0	198	2.0	0.220	6.2	LOS A	1.0	25.2	0.53	0.45	0.53	33.6
West: Route 92														
5	L2	79	2.0	86	2.0	0.219	5.2	LOS A	1.1	27.2	0.36	0.23	0.36	33.9
2	T1	143	2.0	155	2.0	0.219	5.2	LOS A	1.1	27.2	0.36	0.23	0.36	33.9
12	R2	7	2.0	8	2.0	0.219	5.2	LOS A	1.1	27.2	0.36	0.23	0.36	33.0
Appro	oach	229	2.0	249	2.0	0.219	5.2	LOS A	1.1	27.2	0.36	0.23	0.36	33.9
All Ve	ehicles	958	2.0	1041	2.0	0.411	6.3	LOS A	2.5	62.8	0.44	0.31	0.44	33.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Tuesday, May 2, 2023 12:04:03 PM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9 2.1.2 Afternoon peak hour

Int Delay, s/veh	6.7						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	Y		et.			ŧ	
Traffic Vol, veh/h	15	116	138	4	16	109)
Future Vol, veh/h	15	116	138	4	16	109)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None)
Storage Length	0	-	-	-	-	-	•
Veh in Median Storage,	# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	42	36	65	33	40	76	j
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	36	322	212	12	40	143	6

Major/Minor	Minor1	N	lajor1	М	ajor2		
Conflicting Flow All	441	218	0	0	224	0	
Stage 1	218	-	-	-	-	-	
Stage 2	223	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	- 2	2.218	-	
Pot Cap-1 Maneuver	574	822	-	-	1345	-	
Stage 1	818	-	-	-	-	-	
Stage 2	814	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	556	822	-	-	1345	-	
Mov Cap-2 Maneuver	556	-	-	-	-	-	
Stage 1	818	-	-	-	-	-	
Stage 2	788	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s			0		1.7		
HCM LOS	В						

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 785	1345	-	
HCM Lane V/C Ratio	-	- 0.456	0.03	-	
HCM Control Delay (s)	-	- 13.4	7.8	0	
HCM Lane LOS	-	- B	А	Α	
HCM 95th %tile Q(veh)	-	- 2.4	0.1	-	

Int Delay, s/veh	8.7						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	7	1	et.			ŧ	
Traffic Vol, veh/h	145	69	49	43	41	65	j
Future Vol, veh/h	145	69	49	43	41	65	j
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	Stop	-	None	-	None)
Storage Length	0	200	-	-	-	-	
Veh in Median Storage	, # 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	51	42	72	63	60	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	284	164	68	68	68	72	2

Major/Minor	Minor1	N	lajor1	Ν	lajor2	
Conflicting Flow All	310	102	0	0	136	0
Stage 1	102	-	-	-	-	-
Stage 2	208	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	682	953	-	-	1448	-
Stage 1	922	-	-	-	-	-
Stage 2	827	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	649	953	-	-	1448	-
Mov Cap-2 Maneuver	649	-	-	-	-	-
Stage 1	922	-	-	-	-	-
Stage 2	786	-	-	-	-	-
Annroach	W/R		NR		SB	

Approach	WB	NB	SB
HCM Control Delay, s	12.9	0	3.7
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)	-	-	649	953	1448	-	
HCM Lane V/C Ratio	-	-	0.438	0.172	0.047	-	
HCM Control Delay (s)	-	-	14.8	9.6	7.6	0	
HCM Lane LOS	-	-	В	А	А	Α	
HCM 95th %tile Q(veh)	-	-	2.2	0.6	0.1	-	

Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	1	1	7	1
Traffic Vol, veh/h	0	292	217	0	0	0
Future Vol, veh/h	0	292	217	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	200	140	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	80	72	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	365	301	0	0	0

Major/Minor	Major1	Ν	lajor2	l	Minor2				
Conflicting Flow All	301	0	-	0	666	301			
Stage 1	-	-	-	-	301	-			
Stage 2	-	-	-	-	365	-			
Critical Hdwy	4.12	-	-	-	6.42	6.22			
Critical Hdwy Stg 1	-	-	-	-	5.42	-			
Critical Hdwy Stg 2	-	-	-	-	5.42	-			
Follow-up Hdwy	2.218	-	-	-	3.518				
Pot Cap-1 Maneuver	1260	-	-	-	425	739			
Stage 1	-	-	-	-	751	-			
Stage 2	-	-	-	-	702	-			
Platoon blocked, %		-	-	-					
Mov Cap-1 Maneuver	1260	-	-	-	425	739			
Mov Cap-2 Maneuver	-	-	-	-	425	-			
Stage 1	-	-	-	-	751	-			
Stage 2	-	-	-	-	702	-			
Approach	EB		WB		SB				
HCM Control Delay, s	0		0		0				_
HCM LOS					А				
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1 SE	3Ln2		
Capacity (veh/h)		1260	-	-	-	-	-		
HCM Lane V/C Ratio		-	-	-	-	-	-		
HCM Control Delay (s)	0	-	-	-	0	0		
HCM Lane LOS		A	-	-	-	A	A		
HCM 95th %tile Q(veh)	0	-	-	-	-	-		
	,								

Site: 101 [Route 92 at Commercial Ave - Exist Mid/High PM

(Site Folder: General)] Exist Mid/High PM Site Category: (None)

Roundabout

	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver
ID		VOLU [Total	MES HV 1	FLO [Total	WS HV]	Satn	Delay	Service	QUI [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	пvј %	veh/h	пvј %	v/c	sec		veh.	ft		Nale	Cycles	mpł
South	n: Comi	mercial Av	ve.											
3	L2	11	2.0	12	2.0	0.079	4.3	LOS A	0.3	8.3	0.42	0.29	0.42	34.
8	T1	38	2.0	41	2.0	0.079	4.3	LOS A	0.3	8.3	0.42	0.29	0.42	34.
18	R2	23	2.0	25	2.0	0.079	4.3	LOS A	0.3	8.3	0.42	0.29	0.42	33.
Appro	bach	72	2.0	78	2.0	0.079	4.3	LOS A	0.3	8.3	0.42	0.29	0.42	34.
East:	Route	92												
1	L2	7	2.0	8	2.0	0.215	4.9	LOS A	1.1	27.2	0.29	0.16	0.29	35.
6	T1	204	2.0	222	2.0	0.215	4.9	LOS A	1.1	27.2	0.29	0.16	0.29	34.
16	R2	27	2.0	29	2.0	0.215	4.9	LOS A	1.1	27.2	0.29	0.16	0.29	34.
Appro	bach	238	2.0	259	2.0	0.215	4.9	LOS A	1.1	27.2	0.29	0.16	0.29	34.
North	: Comr	nercial Av	/e.											
7	L2	40	2.0	43	2.0	0.196	5.2	LOS A	0.9	23.2	0.42	0.30	0.42	34.
4	T1	48	2.0	52	2.0	0.196	5.2	LOS A	0.9	23.2	0.42	0.30	0.42	34.
14	R2	102	2.0	111	2.0	0.196	5.2	LOS A	0.9	23.2	0.42	0.30	0.42	33.
Appro	bach	190	2.0	207	2.0	0.196	5.2	LOS A	0.9	23.2	0.42	0.30	0.42	33.
West	: Route	92												
5	L2	56	2.0	61	2.0	0.234	5.0	LOS A	1.2	30.4	0.28	0.15	0.28	34.
2	T1	179	2.0	195	2.0	0.234	5.0	LOS A	1.2	30.4	0.28	0.15	0.28	34.
12	R2	27	2.0	29	2.0	0.234	5.0	LOS A	1.2	30.4	0.28	0.15	0.28	33.
Appro	bach	262	2.0	285	2.0	0.234	5.0	LOS A	1.2	30.4	0.28	0.15	0.28	34.
All Ve	hicles	762	2.0	828	2.0	0.234	5.0	LOS A	1.2	30.4	0.33	0.20	0.33	34.

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Tuesday, May 2, 2023 12:05:37 PM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9

Appendix to Traffic Impact Study – Smithville School District, Smithville, Missouri

2.2 Existing Elementary School

2.2.1 Morning peak hour

Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			ŧ
Traffic Vol, veh/h	0	12	68	12	38	88
Future Vol, veh/h	0	12	68	12	38	88
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	38	57	50	48	69
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	32	119	24	79	128

Major/Minor	Minor1	N	lajor1	Ν	/lajor2	
Conflicting Flow All	417	131	0	0	143	0
Stage 1	131	-	-	-	-	-
Stage 2	286	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	592	919	-	-	1440	-
Stage 1	895	-	-	-	-	-
Stage 2	763	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	557	919	-	-	1440	-
Mov Cap-2 Maneuver	557	-	-	-	-	-
Stage 1	895	-	-	-	-	-
Stage 2	718	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		2.9	
HOM LOO	0.1		U		2.0	

HCM LOS А

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)	-	-	919	1440	-	
HCM Lane V/C Ratio	-	-	0.034	0.055	-	
HCM Control Delay (s)	-	-	9.1	7.6	0	
HCM Lane LOS	-	-	Α	А	А	
HCM 95th %tile Q(veh)	-	-	0.1	0.2	-	

Int Delay, s/veh	7.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	1	ţ,			ŧ
Traffic Vol, veh/h	98	31	31	114	22	52
Future Vol, veh/h	98	31	31	114	22	52
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	None	-	None
Storage Length	0	200	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	34	35	86	57	39	68
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	288	89	36	200	56	76

Major/Minor	Minor1	Ν	1ajor1	Ν	/lajor2	
Conflicting Flow All	324	136	0	0	236	0
Stage 1	136	-	-	-	-	-
Stage 2	188	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	670	913	-	-	1331	-
Stage 1	890	-	-	-	-	-
Stage 2	844	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	641	913	-	-	1331	-
Mov Cap-2 Maneuver	641	-	-	-	-	-
Stage 1	890	-	-	-	-	-
Stage 2	807	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	13.8	0	3.3
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1V	VBLn2	SBL	SBT
Capacity (veh/h)	-	-	641	913	1331	-
HCM Lane V/C Ratio	-	-	0.45	0.097	0.042	-
HCM Control Delay (s)	-	-	15.1	9.4	7.8	0
HCM Lane LOS	-	-	С	А	А	Α
HCM 95th %tile Q(veh)	-	-	2.3	0.3	0.1	-

Int Delay, s/veh	1.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	1	1	٦	1
Traffic Vol, veh/h	9	167	274	5	10	16
Future Vol, veh/h	9	167	274	5	10	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	200	140	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	56	70	67	42	42	57
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	16	239	409	12	24	28

Major1	Ν	lajor2		Minor2		
421	0	-	0	680	409	
-	-	-	-	409	-	
-	-	-	-	271	-	
4.12	-	-	-	6.42	6.22	
-	-	-	-	5.42	-	
-	-	-	-	5.42	-	
2.218	-	-	-			
1138	-	-	-	417	642	
-	-	-	-	671	-	
-	-	-	-	775	-	
	-	-	-			
1138	-	-	-	410	642	
-	-	-	-	410	-	
-	-	-	-	660	-	
-	-	-	-	775	-	
FB		WB		SB		
0.0		0				
				5		
nt		EBT	WBT	WBR	SBLn1 S	BLn2
	421 - - 4.12 - 2.218 1138 - - - 1138 - - - - - - - - - - - - - - - - - - -	421 0 - - 4.12 - - - 2.218 - 1138 - - - 1138 - - - 1138 - - - 0.5 -	421 0 - - - - 4.12 - - - - - 2.218 - - 1138 - - - - - 1138 - - - - - 1138 - - - - - 1138 - - - - - 0.5 0 0 nt EBL EBT	421 0 - 0 - - - - 4.12 - - - - - - - 2.218 - - - 1138 - - - - - - - 1138 - - - - - - - 1138 - - - - - - - 1138 - - - - - - - 0.5 0 0 - nt EB WB WBT	421 0 - 0 680 - - - 409 - - - 271 4.12 - - 6.42 - - 5.42 - - 5.42 - - 5.42 2.218 - - 1138 - - 417 - - 671 - - 775 - - 775 - - 410 - - 775 - - 775 - - 775 - - 775 - - 775 - - 775 - - 775 - - 775 - - 775 - - 775 - - 775 - - - 0.5 0 12.5 B -	421 0 - 0 680 409 - - - 409 - - - - 271 - 4.12 - - 6.42 6.22 - - 5.42 - - - 5.42 - 2.218 - - 5.42 - 2.218 - - 3.518 3.318 1138 - - 417 642 - - 671 - - - 775 - - - - 775 - - - - 410 642 - - - 775 - - - - 660 - - - - 775 - EB WB SB 0.5 0 12.5 B - - B -

Capacity (veh/h)	1138	-	-	- 410	642	
HCM Lane V/C Ratio	0.014	-	-	- 0.058	0.044	
HCM Control Delay (s)	8.2	0	-	- 14.3	10.9	
HCM Lane LOS	А	А	-	- B	В	
HCM 95th %tile Q(veh)	0	-	-	- 0.2	0.1	

Site: 101 [Route 92 at Commercial Ave - Exist Elem AM (Site

Folder: General)]

Exist Elem AM Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INPI VOLU [Total veh/h		DEMA FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	n: Com	mercial Av	ve.											
3	L2	8	2.0	9	2.0	0.061	3.7	LOS A	0.3	6.5	0.32	0.18	0.32	35.3
8	T1	37	2.0	40	2.0	0.061	3.7	LOS A	0.3	6.5	0.32	0.18	0.32	35.3
18	R2	18	2.0	20	2.0	0.061	3.7	LOS A	0.3	6.5	0.32	0.18	0.32	34.3
Appro	oach	63	2.0	68	2.0	0.061	3.7	LOS A	0.3	6.5	0.32	0.18	0.32	35.0
East:	Route	92												
1	L2	25	2.0	27	2.0	0.223	4.9	LOS A	1.1	28.8	0.26	0.12	0.26	34.8
6	T1	188	2.0	204	2.0	0.223	4.9	LOS A	1.1	28.8	0.26	0.12	0.26	34.8
16	R2	41	2.0	45	2.0	0.223	4.9	LOS A	1.1	28.8	0.26	0.12	0.26	33.8
Appro	oach	254	2.0	276	2.0	0.223	4.9	LOS A	1.1	28.8	0.26	0.12	0.26	34.6
North	n: Comr	nercial Av	/e.											
7	L2	32	2.0	35	2.0	0.138	4.7	LOS A	0.6	15.6	0.40	0.27	0.40	34.5
4	T1	43	2.0	47	2.0	0.138	4.7	LOS A	0.6	15.6	0.40	0.27	0.40	34.5
14	R2	59	2.0	64	2.0	0.138	4.7	LOS A	0.6	15.6	0.40	0.27	0.40	33.5
Appro	oach	134	2.0	146	2.0	0.138	4.7	LOS A	0.6	15.6	0.40	0.27	0.40	34.0
West	: Route	92												
5	L2	35	2.0	38	2.0	0.134	4.1	LOS A	0.6	15.6	0.26	0.13	0.26	34.8
2	T1	101	2.0	110	2.0	0.134	4.1	LOS A	0.6	15.6	0.26	0.13	0.26	34.8
12	R2	13	2.0	14	2.0	0.134	4.1	LOS A	0.6	15.6	0.26	0.13	0.26	33.8
Appro	oach	149	2.0	162	2.0	0.134	4.1	LOS A	0.6	15.6	0.26	0.13	0.26	34.7
All Ve	ehicles	600	2.0	652	2.0	0.223	4.5	LOS A	1.1	28.8	0.30	0.17	0.30	34.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Tuesday, May 2, 2023 11:51:38 AM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9 2.2.2 Afternoon peak hour

Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ			ŧ
Traffic Vol, veh/h	3	54	142	3	19	133
Future Vol, veh/h	3	54	142	3	19	133
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	38	84	79	75	59	69
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	64	180	4	32	193

Major/Minor	Minor1	N	lajor1	Ma	ajor2			
Conflicting Flow All	439	182	0	0	184	0		
Stage 1	182	-	-	-	-	-		
Stage 2	257	-	-	-	-	-		
Critical Hdwy	6.42	6.22	-	-	4.12	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-		
Critical Hdwy Stg 2	5.42	-	-	-	-	-		
Follow-up Hdwy	3.518	3.318	-	- 2	2.218	-		
Pot Cap-1 Maneuver	575	861	-	-	1391	-		
Stage 1	849	-	-	-	-	-		
Stage 2	786	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver		861	-	- 1	1391	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	849	-	-	-	-	-		
Stage 2	766	-	-	-	-	-		
Approach	WB		NB		SB			
HCM Control Delay, s	9.9		0		1.1			
HCM LOS	А							

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 813	1391	-	
HCM Lane V/C Ratio	-	- 0.089	0.023	-	
HCM Control Delay (s)	-	- 9.9	7.6	0	
HCM Lane LOS	-	- A	Α	А	
HCM 95th %tile Q(veh)	-	- 0.3	0.1	-	

Int Delay, s/veh	9.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1	1	ţ,			ŧ
Traffic Vol, veh/h	165	36	72	57	45	84
Future Vol, veh/h	165	36	72	57	45	84
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	None	-	None
Storage Length	0	200	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	51	82	86	84	66	68
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	324	44	84	68	68	124

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2	
Conflicting Flow All	378	118	0	0	152	0
Stage 1	118	-	-	-	-	-
Stage 2	260	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	624	934	-	-	1429	-
Stage 1	907	-	-	-	-	-
Stage 2	783	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	592	934	-	-	1429	-
Mov Cap-2 Maneuver	592	-	-	-	-	-
Stage 1	907	-	-	-	-	-
Stage 2	743	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	17.1	0	2.7
HCM LOS	С		

Minor Lane/Major Mvmt	NBT	NBRV	/BLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)	-	-	592	934	1429	-	
HCM Lane V/C Ratio	-	-	0.547	0.047	0.048	-	
HCM Control Delay (s)	-	-	18.2	9	7.6	0	
HCM Lane LOS	-	-	С	А	А	А	
HCM 95th %tile Q(veh)	-	-	3.3	0.1	0.1	-	

Int Delay, s/veh	0						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	1
Lane Configurations		ŧ	1	1	7	1	
Traffic Vol, veh/h	0	431	234	0	0	0	1
Future Vol, veh/h	0	431	234	0	0	0	ł
Conflicting Peds, #/hr	0	0	0	0	0	0	I
Sign Control	Free	Free	Free	Free	Stop	Stop	I
RT Channelized	-	None	-	None	-	None	,
Storage Length	-	-	-	200	140	0	1
Veh in Median Storage	,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	86	82	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	501	285	0	0	0	1

Major/Minor	Major1	Ν	1ajor2	1	Minor2			_				
Conflicting Flow All	285	0	-	0	786	285						
Stage 1	-	-	-	-	285	-						
Stage 2	-	-	-	-	501	-						
Critical Hdwy	4.12	-	-	-	6.42	6.22						
Critical Hdwy Stg 1	-	-	-	-	5.42	-						
Critical Hdwy Stg 2	-	-	-	-	5.42	-						
Follow-up Hdwy	2.218	-	-	-	3.518							
Pot Cap-1 Maneuver	1277	-	-	-	361	754						
Stage 1	-	-	-	-	763	-						
Stage 2	-	-	-	-	609	-						
Platoon blocked, %	4077	-	-	-	001	754						
Mov Cap-1 Maneuver		-	-	-	361	754						
Mov Cap-2 Maneuver	-	-	-	-	361	-						
Stage 1	-	-	-	-	763	-						
Stage 2	-	-	-	-	609	-						
Approach	EB		WB		SB							
HCM Control Delay, s	0		0		0							
HCM LOS					А							
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	W/RP	SBLn1 SE	RIn2					
	m		CDI	VDI	VUR.	SDLIT SI						
Capacity (veh/h) HCM Lane V/C Ratio		1277	-	-	-	-	-					
HCM Control Delay (s	•)	0	-	-	-	-	0					
HCM Lane LOS)	A	-	-	-	A	A					
HCM 95th %tile Q(ver	1)	0	-	-	-	~	~					
	1)	0	-	-	-	-	-					

Site: 101 [Route 92 at Commercial Ave - Exist Elem PM (Site

Folder: General)]

Exist Elem PM Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Com	mercial A		VCII/II	70	0/0	300		VCIT	10				mpn
3	L2	3	2.0	3	2.0	0.117	5.7	LOS A	0.5	12.1	0.54	0.47	0.54	34.5
8	T1	49	2.0	53	2.0	0.117	5.7	LOS A	0.5	12.1	0.54	0.47	0.54	34.5
18	R2	34	2.0	37	2.0	0.117	5.7	LOS A	0.5	12.1	0.54	0.47	0.54	33.6
Appro	oach	86	2.0	93	2.0	0.117	5.7	LOS A	0.5	12.1	0.54	0.47	0.54	34.1
East:	Route	92												
1	L2	12	2.0	13	2.0	0.214	4.9	LOS A	1.1	26.9	0.30	0.17	0.30	34.9
6	T1	200	2.0	217	2.0	0.214	4.9	LOS A	1.1	26.9	0.30	0.17	0.30	34.9
16	R2	22	2.0	24	2.0	0.214	4.9	LOS A	1.1	26.9	0.30	0.17	0.30	33.9
Appro	oach	234	2.0	254	2.0	0.214	4.9	LOS A	1.1	26.9	0.30	0.17	0.30	34.8
North	n: Comr	mercial A	/e.											
7	L2	71	2.0	77	2.0	0.245	5.7	LOS A	1.2	30.4	0.43	0.31	0.43	33.8
4	T1	65	2.0	71	2.0	0.245	5.7	LOS A	1.2	30.4	0.43	0.31	0.43	33.7
14	R2	103	2.0	112	2.0	0.245	5.7	LOS A	1.2	30.4	0.43	0.31	0.43	32.9
Appro	oach	239	2.0	260	2.0	0.245	5.7	LOS A	1.2	30.4	0.43	0.31	0.43	33.4
West	: Route	92												
5	L2	61	2.0	66	2.0	0.390	7.1	LOS A	2.3	58.9	0.43	0.28	0.43	33.5
2	T1	331	2.0	360	2.0	0.390	7.1	LOS A	2.3	58.9	0.43	0.28	0.43	33.5
12	R2	19	2.0	21	2.0	0.390	7.1	LOS A	2.3	58.9	0.43	0.28	0.43	32.6
Appro	oach	411	2.0	447	2.0	0.390	7.1	LOS A	2.3	58.9	0.43	0.28	0.43	33.4
All Ve	ehicles	970	2.0	1054	2.0	0.390	6.1	LOS A	2.3	58.9	0.41	0.28	0.41	33.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Tuesday, May 2, 2023 11:59:35 AM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9

Appendix to Traffic Impact Study – Smithville School District, Smithville, Missouri

2.3 Reallocated Middle/High School

2.3.1 Afternoon peak hour

Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ţ,			ŧ
Traffic Vol, veh/h	3	21	203	8	22	90
Future Vol, veh/h	3	21	203	8	22	90
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	42	36	65	33	40	76
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	58	312	24	55	118

Major/Minor	Minor1	Ν	1ajor1	Ν	lajor2	
Conflicting Flow All	552	324	0	0	336	0
Stage 1	324	-	-	-	-	-
Stage 2	228	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	495	717	-	-	1223	-
Stage 1	733	-	-	-	-	-
Stage 2	810	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	471	717	-	-	1223	-
Mov Cap-2 Maneuver	471	-	-	-	-	-
Stage 1	733	-	-	-	-	-
Stage 2	771	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		2.6	
HCM LOS	B					

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 678	1223	-	
HCM Lane V/C Ratio	-	- 0.097	0.045	-	
HCM Control Delay (s)	-	- 10.9	8.1	0	
HCM Lane LOS	-	- B	А	Α	
HCM 95th %tile Q(veh)	-	- 0.3	0.1	-	

Int Delay, s/veh	8.3						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	1	t,			ŧ	
Traffic Vol, veh/h	117	128	59	26	22	53	
Future Vol, veh/h	117	128	59	26	22	53	i i
Conflicting Peds, #/hr	0	0	0	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	Stop	-	None	-	None	,
Storage Length	0	200	-	-	-	-	
Veh in Median Storage	,# 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	1
Peak Hour Factor	51	42	72	63	60	90	1
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	229	305	82	41	37	59	1

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	236	103	0	0	123	0
Stage 1	103	-	-	-	-	-
Stage 2	133	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	752	952	-	-	1464	-
Stage 1	921	-	-	-	-	-
Stage 2	893	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	732	952	-	-	1464	-
Mov Cap-2 Maneuver	732	-	-	-	-	-
Stage 1	921	-	-	-	-	-
Stage 2	870	-	-	-	-	-
	=					

Approach	WB	NB	SB
HCM Control Delay, s	11.2	0	2.9
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1W	/BLn2	SBL	SBT
Capacity (veh/h)	-	-	732	952	1464	-
HCM Lane V/C Ratio	-	-	0.313	0.32	0.025	-
HCM Control Delay (s)	-	-	12.1	10.6	7.5	0
HCM Lane LOS	-	-	В	В	А	Α
HCM 95th %tile Q(veh)	-	-	1.3	1.4	0.1	-

Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	1	1	7	1
Traffic Vol, veh/h	12	308	225	14	28	48
Future Vol, veh/h	12	308	225	14	28	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	200	140	0
Veh in Median Storage	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	80	72	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	385	313	15	30	52

Major1	Ма	ajor2	<u> </u>	Minor2	
328	0	-	0	724	313
-	-	-	-	313	-
-	-	-	-	411	-
4.12	-	-	-	6.42	6.22
-	-	-	-	5.42	-
-	-	-	-	5.42	-
2.218	-	-	-		3.318
r 1232	-	-	-	393	727
-	-	-	-	741	-
-	-	-	-	669	-
	-	-	-		
er 1232	-	-	-	388	727
er -	-	-	-	388	-
-	-	-	-	731	-
-	-	-	-	669	-
EB		WB		SB	
s 0.3		0		12.1	
				В	
	328 - - 4.12 - - 2.218 r 1232 - - - - - - - - - - - - - - - - - -	328 0 4.12 - 2.218 - r 1232 - er 1232 - er - EB	328 0 4.12 2.218 2.218 EF 1232 EB WB	328 0 - 0 - - - - 4.12 - - - - - - - 2.218 - - - r 1232 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<	328 0 - 0 724 - - - 313 - - - 411 4.12 - - 6.42 - - 5.42 - - 5.42 2.218 - - 3.518 r 1232 - - 393 - - - 669 - - - 669 - - - 388 - - - 388 - - - 388 - - - 369 - - - 388 - - - 369 - - - 388 - - - - - 669 - - - 669 - S 0.3 0 12.1 -

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2	
Capacity (veh/h)	1232	-	-	- 388	727	
HCM Lane V/C Ratio	0.011	-	-	- 0.078	0.072	
HCM Control Delay (s)	8	0	-	- 15.1	10.3	
HCM Lane LOS	А	А	-	- C	В	
HCM 95th %tile Q(veh)	0	-	-	- 0.3	0.2	

Site: 101 [Route 92 at Commercial Ave - Reallocated Mid/High PM (Site Folder: General)]

Reallocated Mid/High PM Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Com	mercial A	ve.											
3	L2	11	2.0	12	2.0	0.069	4.3	LOS A	0.3	7.3	0.42	0.29	0.42	34.9
8	T1	28	2.0	30	2.0	0.069	4.3	LOS A	0.3	7.3	0.42	0.29	0.42	34.9
18	R2	24	2.0	26	2.0	0.069	4.3	LOS A	0.3	7.3	0.42	0.29	0.42	33.9
Appro	oach	63	2.0	68	2.0	0.069	4.3	LOS A	0.3	7.3	0.42	0.29	0.42	34.5
East:	Route	92												
1	L2	8	2.0	9	2.0	0.258	5.3	LOS A	1.4	34.5	0.29	0.15	0.29	34.8
6	T1	245	2.0	266	2.0	0.258	5.3	LOS A	1.4	34.5	0.29	0.15	0.29	34.7
16	R2	37	2.0	40	2.0	0.258	5.3	LOS A	1.4	34.5	0.29	0.15	0.29	33.8
Appro	oach	290	2.0	315	2.0	0.258	5.3	LOS A	1.4	34.5	0.29	0.15	0.29	34.6
North	n: Comr	mercial Av	/e.											
7	L2	36	2.0	39	2.0	0.179	5.3	LOS A	0.8	20.5	0.45	0.34	0.45	34.2
4	T1	41	2.0	45	2.0	0.179	5.3	LOS A	0.8	20.5	0.45	0.34	0.45	34.2
14	R2	88	2.0	96	2.0	0.179	5.3	LOS A	0.8	20.5	0.45	0.34	0.45	33.3
Appro	oach	165	2.0	179	2.0	0.179	5.3	LOS A	0.8	20.5	0.45	0.34	0.45	33.7
West	: Route	92												
5	L2	52	2.0	57	2.0	0.236	5.0	LOS A	1.2	30.8	0.27	0.13	0.27	34.4
2	T1	188	2.0	204	2.0	0.236	5.0	LOS A	1.2	30.8	0.27	0.13	0.27	34.4
12	R2	27	2.0	29	2.0	0.236	5.0	LOS A	1.2	30.8	0.27	0.13	0.27	33.5
Appro	oach	267	2.0	290	2.0	0.236	5.0	LOS A	1.2	30.8	0.27	0.13	0.27	34.3
All Ve	ehicles	785	2.0	853	2.0	0.258	5.1	LOS A	1.4	34.5	0.32	0.19	0.32	34.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Tuesday, May 2, 2023 12:07:05 PM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9

Appendix to Traffic Impact Study – Smithville School District, Smithville, Missouri

2.4 Reallocated Elementary School

2.4.1 Afternoon peak hour

Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		t,			ŧ
Traffic Vol, veh/h	0	18	157	7	24	102
Future Vol, veh/h	0	18	157	7	24	102
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	38	84	79	75	59	69
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	21	199	9	41	148

Major/Minor	Minor1	N	Major1	Major2	
Conflicting Flow All	434	204		0 208	0
Stage 1	204	-	-		-
Stage 2	230	-	-		-
Critical Hdwy	6.42	6.22	-	- 4.12	-
Critical Hdwy Stg 1	5.42	-	-		-
Critical Hdwy Stg 2	5.42	-	-		-
Follow-up Hdwy		3.318	-	- 2.218	-
Pot Cap-1 Maneuver	579	837	-	- 1363	-
Stage 1	830	-	-		-
Stage 2	808	-	-		-
Platoon blocked, %			-	-	-
Mov Cap-1 Maneuver		837	-	- 1363	-
Mov Cap-2 Maneuver		-	-		-
Stage 1	830	-	-		-
Stage 2	781	-	-		-
Approach	WB		NB	SB	
HCM Control Delay, s			0	1.7	
HCM LOS	A		v		
N / N	. 1	NDT			ODT

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 837	1363	-	
HCM Lane V/C Ratio	-	- 0.026	0.03	-	
HCM Control Delay (s)	-	- 9.4	7.7	0	
HCM Lane LOS	-	- A	Α	Α	
HCM 95th %tile Q(veh)	-	- 0.1	0.1	-	

Int Delay, s/veh	7.4						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	5	1	ţ,			ŧ	1
Traffic Vol, veh/h	152	49	78	71	14	81	
Future Vol, veh/h	152	49	78	71	14	81	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	Stop	-	None	-	None)
Storage Length	0	200	-	-	-	-	•
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	51	82	86	84	66	68	}
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	298	60	91	85	21	119)

Major/Minor	Minor1	N	lajor1	Ν	/lajor2	
Conflicting Flow All	295	134	0	0	176	0
Stage 1	134	-	-	-	-	-
Stage 2	161	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	696	915	-	-	1400	-
Stage 1	892	-	-	-	-	-
Stage 2	868	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	685	915	-	-	1400	-
Mov Cap-2 Maneuver	685	-	-	-	-	-
Stage 1	892	-	-	-	-	-
Stage 2	854	-	-	-	-	-
Annroach	\\/D		ND		CD	

Approach	WB	NB	SB
HCM Control Delay, s	13.4	0	1.2
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRV	/BLn1\	WBLn2	SBL	SBT	
Capacity (veh/h)	-	-	685	915	1400	-	
HCM Lane V/C Ratio	-	-	0.435	0.065	0.015	-	
HCM Control Delay (s)	-	-	14.2	9.2	7.6	0	
HCM Lane LOS	-	-	В	Α	Α	Α	
HCM 95th %tile Q(veh)	-	-	2.2	0.2	0	-	

Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	1	1	٢	7
Traffic Vol, veh/h	6	476	246	0	15	26
Future Vol, veh/h	6	476	246	0	15	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	200	140	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	86	82	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	553	300	0	16	28

Major/Minor	Major1	Ν	/lajor2	ļ	Minor2	
Conflicting Flow All	300	0	-	0	867	300
Stage 1	-	-	-	-	300	-
Stage 2	-	-	-	-	567	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1261	-	-	-	323	740
Stage 1	-	-	-	-	752	-
Stage 2	-	-	-	-	568	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve		-	-	-	320	740
Mov Cap-2 Maneuve	r -	-	-	-	320	-
Stage 1	-	-	-	-	746	-
Stage 2	-	-	-	-	568	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		12.6	
HCM LOS	5 0.1		0		12.0 B	
					U	
Minor Lane/Major Mv	rmt 🗌	EBL	EBT	WBT	WBR	SBLn1 SBLn2

Capacity (veh/h)	1261	-	-	-	320	740
HCM Lane V/C Ratio	0.005	-	-	-	0.051	0.038
HCM Control Delay (s)	7.9	0	-	-	16.9	10.1
HCM Lane LOS	А	А	-	-	С	В
HCM 95th %tile Q(veh)	0	-	-	-	0.2	0.1

Site: 101 [Route 92 at Commercial Ave - Reallocated Elem PM (Site Folder: General)]

Reallocated Elem PM Site Category: (None) Roundabout

Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO ^v [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	n: Comi	mercial A		Volivit	,,,	110	000		Von					mpn
3	L2	3	2.0	3	2.0	0.109	5.7	LOS A	0.4	11.2	0.54	0.48	0.54	34.5
8	T1	42	2.0	46	2.0	0.109	5.7	LOS A	0.4	11.2	0.54	0.48	0.54	34.5
18	R2	34	2.0	37	2.0	0.109	5.7	LOS A	0.4	11.2	0.54	0.48	0.54	33.6
Appro	oach	79	2.0	86	2.0	0.109	5.7	LOS A	0.4	11.2	0.54	0.48	0.54	34.1
East:	Route	92												
1	L2	13	2.0	14	2.0	0.255	5.3	LOS A	1.3	33.4	0.32	0.18	0.32	34.7
6	T1	222	2.0	241	2.0	0.255	5.3	LOS A	1.3	33.4	0.32	0.18	0.32	34.7
16	R2	43	2.0	47	2.0	0.255	5.3	LOS A	1.3	33.4	0.32	0.18	0.32	33.7
Appro	oach	278	2.0	302	2.0	0.255	5.3	LOS A	1.3	33.4	0.32	0.18	0.32	34.5
North	n: Comr	nercial A	/e.											
7	L2	68	2.0	74	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	33.7
4	T1	61	2.0	66	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	33.7
14	R2	98	2.0	107	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	32.8
Appro	oach	227	2.0	247	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	33.3
West	: Route	92												
5	L2	71	2.0	77	2.0	0.402	7.2	LOS A	2.4	61.7	0.42	0.27	0.42	33.4
2	T1	336	2.0	365	2.0	0.402	7.2	LOS A	2.4	61.7	0.42	0.27	0.42	33.4
12	R2	19	2.0	21	2.0	0.402	7.2	LOS A	2.4	61.7	0.42	0.27	0.42	32.5
Appro	oach	426	2.0	463	2.0	0.402	7.2	LOS A	2.4	61.7	0.42	0.27	0.42	33.3
All Ve	ehicles	1010	2.0	1098	2.0	0.402	6.3	LOS A	2.4	61.7	0.41	0.28	0.41	33.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Wednesday, May 3, 2023 10:01:41 AM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9

Appendix to Traffic Impact Study – Smithville School District, Smithville, Missouri

2.5 Site Elementary School

2.5.1 Afternoon peak hour

Int Delay, s/veh	1.2						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	Y		ţ,			ŧ	
Traffic Vol, veh/h	0	18	157	7	24	107	'
Future Vol, veh/h	0	18	157	7	24	107	,
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None)
Storage Length	0	-	-	-	-	-	•
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	38	84	79	75	59	69)
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	0	21	199	9	41	155	;

Major/Minor	Minor1	Ν	1ajor1	Ν	/lajor2	
Conflicting Flow All	441	204	0	0	208	0
Stage 1	204	-	-	-	-	-
Stage 2	237	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuver	574	837	-	-	1363	-
Stage 1	830	-	-	-	-	-
Stage 2	802	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	555	837	-	-	1363	-
Mov Cap-2 Maneuver	555	-	-	-	-	-
Stage 1	830	-	-	-	-	-
Stage 2	776	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		1.6	
HCM LOS	A		Ŭ			

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 837	1363	-	
HCM Lane V/C Ratio	-	- 0.026	0.03	-	
HCM Control Delay (s)	-	- 9.4	7.7	0	
HCM Lane LOS	-	- A	А	Α	
HCM 95th %tile Q(veh)	-	- 0.1	0.1	-	

05/03/2023

Int Delay, s/veh	7.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	-
Lane Configurations	7	1	ţ,			ŧ	
Traffic Vol, veh/h	152	49	78	76	19	81	
Future Vol, veh/h	152	49	78	76	19	81	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	Stop	-	None	-	None	;
Storage Length	0	200	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	51	82	86	84	66	68	3
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	298	60	91	90	29	119)

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	313	136	0	0	181	0
Stage 1	136	-	-	-	-	-
Stage 2	177	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	680	913	-	-	1394	-
Stage 1	890	-	-	-	-	-
Stage 2	854	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	665	913	-	-	1394	-
Mov Cap-2 Maneuver	665	-	-	-	-	-
Stage 1	890	-	-	-	-	-
Stage 2	835	-	-	-	-	-
Anna ach			ND		<u>CD</u>	

Approach	WB	NB	SB
HCM Control Delay, s	13.8	0	1.5
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRW	BLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)	-	-	665	913	1394	-	
HCM Lane V/C Ratio	-	- ().448	0.065	0.021	-	
HCM Control Delay (s)	-	-	14.7	9.2	7.6	0	
HCM Lane LOS	-	-	В	А	Α	А	
HCM 95th %tile Q(veh)	-	-	2.3	0.2	0.1	-	

Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	1	1	٦	1
Traffic Vol, veh/h	6	476	246	5	15	26
Future Vol, veh/h	6	476	246	5	15	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	200	140	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	86	82	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	553	300	5	16	28

Major/Minor	Major1	Ν	/lajor2		Minor2	
Conflicting Flow All	305	0	-	0	867	300
Stage 1	-	-	-	-	300	-
Stage 2	-	-	-	-	567	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuve	r 1256	-	-	-	323	740
Stage 1	-	-	-	-	752	-
Stage 2	-	-	-	-	568	-
Platoon blocked, %	1050	-	-	-		= 4.0
Mov Cap-1 Maneuve		-	-	-	320	740
Mov Cap-2 Maneuve	er -	-	-	-	320	-
Stage 1	-	-	-	-	746	-
Stage 2	-	-	-	-	568	-
Approach	EB		WB		SB	
HCM Control Delay,	s 0.1		0		12.6	
HCM LOS					В	
Minor Lane/Maior M	vmt	FBI	FBT	WBT	WRR	SBI n1 SBI

winor Lane/wajor www.	EDL	EDI	VVDI	WDR SDLIII	SPLIIZ	
Capacity (veh/h)	1256	-	-	- 320	740	
HCM Lane V/C Ratio	0.005	-	-	- 0.051	0.038	
HCM Control Delay (s)	7.9	0	-	- 16.9	10.1	
HCM Lane LOS	А	А	-	- C	В	
HCM 95th %tile Q(veh)	0	-	-	- 0.2	0.1	

Site: 101 [Route 92 at Commercial Ave - Site Elem PM (Site

Folder: General)]

Site Elem PM Site Category: (None) Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INPI VOLU [Total veh/h		DEMA FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	n: Comi	mercial Av	/e.											
3	L2	3	2.0	3	2.0	0.110	5.7	LOS A	0.4	11.3	0.55	0.48	0.55	34.5
8	T1	43	2.0	47	2.0	0.110	5.7	LOS A	0.4	11.3	0.55	0.48	0.55	34.5
18	R2	34	2.0	37	2.0	0.110	5.7	LOS A	0.4	11.3	0.55	0.48	0.55	33.5
Appro	oach	80	2.0	87	2.0	0.110	5.7	LOS A	0.4	11.3	0.55	0.48	0.55	34.1
East: Route 92														
1	L2	13	2.0	14	2.0	0.256	5.4	LOS A	1.3	33.6	0.33	0.19	0.33	34.6
6	T1	222	2.0	241	2.0	0.256	5.4	LOS A	1.3	33.6	0.33	0.19	0.33	34.6
16	R2	43	2.0	47	2.0	0.256	5.4	LOS A	1.3	33.6	0.33	0.19	0.33	33.7
Appro	oach	278	2.0	302	2.0	0.256	5.4	LOS A	1.3	33.6	0.33	0.19	0.33	34.5
North	n: Comr	nercial Av	e.											
7	L2	68	2.0	74	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	33.7
4	T1	61	2.0	66	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	33.7
14	R2	98	2.0	107	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	32.8
Appro	oach	227	2.0	247	2.0	0.239	5.8	LOS A	1.1	29.2	0.45	0.33	0.45	33.3
West: Route 92														
5	L2	75	2.0	82	2.0	0.406	7.3	LOS A	2.5	62.6	0.43	0.27	0.43	33.3
2	T1	336	2.0	365	2.0	0.406	7.3	LOS A	2.5	62.6	0.43	0.27	0.43	33.3
12	R2	19	2.0	21	2.0	0.406	7.3	LOS A	2.5	62.6	0.43	0.27	0.43	32.5
Appro	oach	430	2.0	467	2.0	0.406	7.3	LOS A	2.5	62.6	0.43	0.27	0.43	33.3
All Ve	ehicles	1015	2.0	1103	2.0	0.406	6.3	LOS A	2.5	62.6	0.42	0.28	0.42	33.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: R 3C DESIGN GROUP | Licence: PLUS / 1PC | Processed: Wednesday, May 3, 2023 10:04:34 AM Project: F:\Projects\23-002-MKEC Smithville\Design\Sidra\Rte 92 at Commercial Ave.sip9